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ABSTRACT 

The objective of this research is to develop new stochastic methods based on most 

probable points (MPPs) for general reliability analysis and reliability-based design 

optimization of complex engineering systems.  The current efforts involves: (1) 

univariate method with simulation for reliability analysis; (2) univariate method with 

numerical integration for reliability analysis; (3) multi-point univariate for reliability 

analysis involving multiple MPPs; and (4) univariate method for design sensitivity 

analysis and reliability-based design optimization. 

 Two MPP-based univariate decomposition methods were developed for 

component reliability analysis with highly nonlinear performance functions.  Both 

methods involve novel function decomposition at MPP that facilitates higher-order 

univariate approximations of a performance function in the rotated Gaussian space.  The 

first method entails Lagrange interpolation of univariate component functions that leads 

to an explicit performance function and subsequent Monte Carlo simulation.  Based on 

linear or quadratic approximations of the univariate component function in the direction 

of the MPP, the second method formulates the performance function in a form amenable 

to an efficient reliability analysis by multiple one-dimensional integrations.  Although 

both methods have comparable computational efficiency, the second method can be 

extended to derive analytical sensitivity of failure probability for design optimization.  

For reliability problems entailing multiple MPPs, a multi-point univariate decomposition 

method was also developed.   In addition to the effort of identifying the MPP, the 

univariate methods require a small number of exact or numerical function evaluations at 
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selected input.  Numerical results indicate that the MPP-based univariate methods 

provide accurate and/or computationally efficient estimates of failure probability than 

existing methods.   

Finally, a new univariate decomposition method was developed for design 

sensitivity analysis and reliability-based design optimization subject to uncertain 

performance functions in constraints.  The method involves a novel univariate 

approximation of a general multivariate function in the rotated Gaussian space; analytical 

sensitivity of failure probability with respect to design variables; and standard gradient-

based optimization algorithms.  In both reliability and sensitivity analyses, the proposed 

effort has been reduced to performing multiple one-dimensional integrations.  Numerical 

results indicate that the proposed method provides accurate and computationally efficient 

estimates of the sensitivity of failure probability and leads to accurate design optimization 

of uncertain mechanical systems. 
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CHAPTER 1 

INTRODUCTION 

1.1  Background and Motivation 

Balancing the requirements of reliability and cost is a dilemma for engineers in 

the design of complex engineering structures.  Simply increasing the cost or weight of a 

structure does not always yield an improvement in reliability.  Although traditional 

deterministic analysis and optimization techniques are well defined, they provide little or 

no assistance to a designer in consistently characterizing reliability.  In other words, there 

is no systematic way for a deterministic design approach to predict structural safety 

probabilistically.  Furthermore, optimization techniques based on a deterministic 

approach usually lead to a cost and/or weight savings, but an unreliable and/or unsafe 

design.  There are many uncertainties, such as loads, material properties, geometry, and 

manufacturing tolerances that exist in engineering structures.  The ability to accurately 

characterize and propagate these uncertainties is increasingly important in order to 

evaluate their effects on the probabilistic response and reliability of complex engineering 

structures.  Figure 1.1 shows uncertainty propagation and probabilistic analysis in a 

physics-based simulation of such complex systems.  Once designers are able to model 

uncertainties and predict their effects on response, reliability-based design optimization 

or robust design optimization can be conducted to solve the dilemma of cost and 

reliability.  

Unfortunately, stochastic methods embedded in current reliability-based/robust 

design processes are inaccurate and/or computationally inefficient when: (1) the input-

 



www.manaraa.com

  2

output relationship is highly nonlinear; (2) the number of input random variables or fields 

is large; and (3) there are large statistical variations in input.  For example, the most 

common approach to predict the failure probability involves first- and second- order 

reliability methods (FORM/SORM), which are not adequate for highly nonlinear 

problems.  Simulation methods, which are usually employed for obtaining benchmark 

results, are not computationally efficient, and are not suitable to being embedded in 

optimization design processes.  A new stochastic method is thus needed with greater 

accuracy and/or better efficiency than traditional methods.  Such a method should be able 

to be integrated into the reliability-based optimization process to solve realistic design 

problems.   

   

1.2  Objectives of the Study 

The primary objective of this study is to develop a new stochastic method to solve 

highly nonlinear reliability problems, referred to as the most probable point (MPP)-based 

decomposition method, for reliability analysis and subsequent design optimization of 

complex engineering systems.  The following four research directions have been pursued: 

(1) development of an MPP-based univariate method with simulation; (2) development of 

an MPP-based univariate method with numerical integration; (3) development of an 

MPP-based univariate method for solving multiple MPPs problems; (4) sensitivity 

analysis and reliability-based design optimization involving the new univariate method. 

The proposed MPP-based decomposition method is new and will address highly 

nonlinear input-output transformation, unlimited number of dependent or correlated 
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random variables, and a large uncertainty of random input.  The method involves a novel 

decomposition at the MPP that facilitates a univariate approximation of the general 

multivariate function, and probability estimation by simulation or numerical integration.  

This univariate approximation can be highly nonlinear, which includes all higher-order 

univariate terms, so it should provide better approximation around MPP than the linear 

(FORM) or quadratic (SORM) approximation.  In addition to the effort of identifying the 

MPP, the method developed requires a small number of exact or numerical evaluations of 

performance function at a selected input.  Hence, the proposed method will not only 

provide accurate solutions, but also create computationally efficient results compared 

with existing methods.     

 

1.3  Organization of the Thesis 

Chapter 2 presents mathematical generalities and notations required by reliability 

analysis and a state-of-the-art review of methods for reliability analysis and reliability-

based-optimization-design.  The need for fundamental research is emphasized. 

Chapter 3 presents an MPP-based univariate method with simulation.  The 

following topics are discussed: multivariate function decomposition at MPP, response 

surface generation by Lagrange interpolation, and Monte Carlo simulation.   

Chapter 4 proposes an MPP-based univariate method with numerical integration.  

This method involves univariate decomposition of the performance function and 

univariate integration for failure probability estimation.   
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Chapter 5 discusses the extension of the MPP-based univariate method in multiple 

MPPs problems.  This application involves a global optimization method entailing the  

barrier method, univariate decomposition at multiple MPPs, and system reliability 

analysis.  

Chapter 6 presents reliability-based design optimization with univariate 

decomposition. The proposed RBDO process involves reliability analysis by univariate 

decomposition, design sensitivity analysis by univariate decomposition, and standard 

gradient-based design optimization. 

Chapter 7 provides conclusions from the present work and recommendations for 

the future studies. 
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CHAPTER 2 

STATE-OF-THE-ART REVIEW 

 
2.1 Generalities 

This section introduces mathematical generalities and notations that are required 

by the probabilistic methods presented in subsequent sections. 

2.1.1 Probability Space 

The observation of a random phenomenon is classically referred to as a trial.  All 

possible outcomes of a trial from the sample space of the phenomenon are denoted by Ω .  

An event is defined as a subset of Ω  containing all outcomes .  If there is no 

outcome in one event, then the event is null set, and denoted by 

ω∈Ω

∅ .  Events A and B are 

disjoint events if .  Events A and B are equal if and only if  and A B∩ =∅ A B⊆ B A⊆ .  

Probability theory aims at associating numbers with events, i.e., their probability of 

occurrence.  Let P denote the probability measure.  An σ-algebra is a nonempty 

collection of subsets of  such that the following holds: (1) The empty set ∅  is in .  

(2) If A is in , then so is the complement of A.  (3) If A

F

Ω F

F i, i = 1, 2, … is a sequence of 

elements of , then the union of AF i is in F .  The probability space constructed by these 

notions is denoted by a triple ( ), , PΩ F . 

 

2.1.2 Random Variable 

Consider a probability space ( ), , PΩ F  and a real-valued random variable X 

defined on this space.  The cumulative distribution function (CDF), denoted by ( )XF x , 
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of the random variable X is defined by the mapping :X Ω→ \  and the probability 

measure P, i.e., .  If ( ) ( )XF x P X x≡ ≤ ( )XF x is continuous in , then the probability 

density function (PDF), denoted by 

\

( )Xf x , is ( ) ( )X Xf x dF x d= x

X dx

.  

For function , where g is continuous in , the lth statistical moment 

or moment of order l of X is defined as 

( ) lg X X= \

( )l l
lm X x f x

+∞

−∞
⎡ ⎤≡ ≡⎣ ⎦ ∫E ,                                        (2.1) 

where is the expectation operator.  If function  is considered, then 

the results in Equation (2.1) define the central moments of order l of X.  The moments 

, 

E ( ) ( )1
lg X X m= −

1µ X m≡ [ ]2σ µX XX≡ −E , ν σ µX X≡ , [ ]3 3
3γ µ σX XX≡ −E , and 

[ ]4 4
4γ µ σXX≡ −E X

∈\

)

 are called the mean, variance, coefficient of variation, coefficient 

of skewness, and coefficient of kurtosis, respectively.  These moments can be calculated 

by direct integration, as expressed in Equation (2.1).  The positive square root of the 

variance is called standard deviation and is denoted by . σX

 

2.1.3 Random Vector 

Let  be a real-valued random vector on the probability 

space .  The joint cumulative distribution function, denoted by , of X is 

defined by the mapping  and the probability measure P, i.e., 

{ }1, , T N
NX X=X "

( , , PΩ F ( )FX x

: NΩ→X \
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( ) { }( )1

N
i ii

F P X x
=

≡ ≤X x ∩ .  If ( )XF x is such that ( ) ( ) 1
N

Nf F x x= ∂ ∂X Xx x "∂ exists, 

then  is called the joint probability density function of X. ( )fX x

Consider continuous function ( ) 1
i

N l
ii

g X
=

=∏X , where  are 

integers.  The lth statistical moment or moment of order 

0, 1, ,il i≥ = " N

l
1

N
ii

l
=

= ∑  of X is 

( )
1 , , 1

i

N

N l
l l ii

m g
=

X⎡ ⎤≡ ≡⎡ ⎤⎣ ⎦ ⎣ ⎦∏X" E E .                                     (2.2) 

For example, the first and second moment properties, such as mean µ  of  
iX iX , 

correlation (ρ  of ,ij i j )X X , covariance ( )γ  of ,ij i jX X , and variance 2σ  of 
iX iX , can be 

easily obtained from Equation (2.2) as 

[ ]
1 , ,µ

i NX i lX m≡ = "E l i for 1, 0,i jl l j= = ≠ ,                            (2.3) 

1, ,ρ
Nij i j l lX X m⎡ ⎤≡ =⎣ ⎦ "E  for 1, 0, ,i j kl l l k i j= = = ≠ ,              (2.4) 

( )( )γ µ µ ρ µ µ
i jij i X j X ij X XX X⎡ ⎤≡ − − = −⎣ ⎦E

i j

ii

,                         (2.5) 

and 

22σ µ γ
i iX i XX⎡ ⎤≡ − =⎣ ⎦E .                                                         (2.6) 

 

2.2 Reliability Analysis 

2.2.1 Basic Random Variables and Limit State Function 

Consider a system with uncertain mechanical characteristics that is subject to 

random loads.  Denote by X an N-dimensional vector of basic random variables with 
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components {X1, …, XN} describing the randomness in geometry, material properties and 

loading.  To assess the reliability of the structural system, a limit state function g that 

depends on basic random vector X defined as follows: ( ) 0g >X , which defines the safe 

state of the structure, and ( ) 0g ≤X  defines the failure state.  The values of X satisfying 

 define the limit state surface of the structure in the original space.  ( ) 0g =X

 

2.2.2 Component and System Reliability Analyses 

A fundamental problem in time-invariant component reliability analysis entails 

calculation of a multi-fold integral (Madsen, et. al, 1986) 

                              ( )
( ) 0

0 (F g
P P g f d

<
≡ < =⎡ ⎤⎣ ⎦ ∫ Xx

)X x x ,                                   (2.7)   

where  is a real-valued, N-dimensional random vector defined 

on a probability space ( ) comprising the sample space Ω, the σ-field , and the 

probability measure P; g(x) is the performance function, such that  represents 

the failure domain; P

1{ , , }T
NX X=X " N∈\

, , PΩ F F

( ) 0g <x

F is the probability of failure; and  is the joint probability 

density function of X, which typically represents loads, material properties, and 

geometry, respectively.   

( )fX x

In general, any engineering system has to satisfy more than one performance 

criterion.  System reliability evaluations are used to consider multiple failure modes 

and/or multiple component failures.  A complete reliability analysis includes both 

 



www.manaraa.com

  10

component- and system-level estimates.  If there are M failure modes or multiple 

component failures, series, parallel and mixed system are described by 

series system 

1

M
ii

F
=

=∪ F

F

M

,                                                           (2.8) 

parallel system 

1

M
ii

F
=

=∩ ,                                                        (2.9) 

parallel systems in series 

11 1
,  il m l

ij iii j
F F m

== =
= =∑∪ ∩ ,                                        (2.10) 

and series systems in parallel 

 l

i=11 1
,  il m

ij ii j
F F m

= =
M= =∑∩ ∪ ,                                       (2.11) 

where  is the failure event of the ith system component, ( ) 0i iF g≡ X < ( )ig X  is the ith 

performance function, and F is the system failure event.   

If Equation (2.10) is a minimal set, it can be denoted by a minimal cut set.  Cut 

sets are minimal if they contain no other cut sets as a genuine subset.  Analogously, 

Equation (2.11) is called a tie set.  Such sets are minimal if no tie set contains another tie 

set as a genuine subset.        

For a series system made of M independent events, the failure probability is given 

by 

( )(11
1 1M M

F i ii
P P F P F

==
⎡ ⎤= = − −⎣ ⎦ ∏∪ )i .                                (2.12) 
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Similarly, for a parallel system consisting of M independent events, the failure probability 

is 

( )11

M M
F i ii

P P F P F
==

⎡ ⎤= =⎣ ⎦ ∏∩ i

);

.                                    (2.13) 

In the case of fully dependent events,  

( ){ }1
max ,  1, ,M

F i ii i
P P F P F i M

=
⎡ ⎤= = =⎣ ⎦ "∪ ,                          (2.14) 

and 

( ){ }1
min ,  1, ,M

F i ii i
P P F P F i M

=
⎡ ⎤= = =⎣ ⎦ "∩ .                          (2.15) 

For arbitrary cases of series system (failure domain is given by the intersection of 

componential failure domains), the failure probability can be estimated by 

(1
P M

F i Mi
P F

=
⎡ ⎤= ≅ Φ −⎣ ⎦ R∩ β ,                               (2.16) 

where is the joint CDF of an M-dimensional Gaussian vector, is a 

vector of  reliability indices obtained by FORM/SORM (will be discussed in section 

2.4.2)  for each failure event, and 

( )nΦ i { }1β , ,β T
M=β "

R is the correlation matrix. 

Furthermore, if the failure events can be reduced to the minimal cut set and the 

cut sets all have small failure probabilities, then the narrow probability bounds can be 

derived as 

,F L F F UP P P ,≤ ≤ ,                                            (2.17a) 

where the lower bound PF,L and the upper bound PF,U are 

( ) ( ) (, 1
2 2

max 0,
M M

F L i i j
i i

P P F P F P F F
= =

)⎧ ⎫= + −⎨ ⎬
⎩ ⎭

∑ ∑ ∩                  (2.17b) 
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and 

      ( ) ( ) ({ )}{ }, 1
2

max
M

F U i i jj ii
P P F P F P F F

<
=

= + −∑ ∩ .                  (2.17c)  

 

2.2.3 Early Reliability Analyses 

Early structural reliability analysis aimed at determining the failure probability in 

terms of second moment statistics of resistance and load variables.  Suppose that 

performances of a structural system can be lumped into two random variables denoted by 

resistance R and load S respectively.  The safety margin is defined by 

Z R S≡ − .                                                      (2.18)       

Cornell’s reliability index (Cornell, 1969) is then defined by 

Z
C

Z

µ
β =

σ
,                                                       (2.19) 

where µ  and σZ Z  are mean and standard deviation respectively of Z.  It can be given the 

following interpretation: if R and S are jointly normal, so is Z.  The failure probability is 

given by 

( ) (0 Z Z
F C

Z Z

ZP P Z P
⎛ ⎞−µ µ

= ≤ = ≤ − ≡ Φ −β⎜ ⎟σ σ⎝ ⎠
) ,                   (2.20) 

where  is the standard normal cumulative distribution function.  In this case, ( )Φ i Cβ  can 

be described as a function of the second moment statistics of R and S, given by 

2 2 2
R S

C

R S RS R S

µ −µ
β =

σ +σ − ρ σ σ
,                                     (2.21) 
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where  are mean and standard deviation respectively of R,   are mean and 

standard deviation respectively of S, and 

,  Rµ σR S,  Sµ σ

RSρ  is the correlation coefficient of R and S. 

The general case would be that Z is a limit state function of random vector X, 

( )Z g≡ X , where , and the mean vector 1{ , , }T
NX X=X " N∈\ Xµ  and covariance 

matrix R  are known.  If g-function is nonlinear, using Taylor expansion around the mean 

and only keeping the linear term will lead to the so-called mean value first order 

reliability index   

( )

( )
MVFOSM T

g

g g
β =

X X

X

X = X =
R

µ µ

µ

∇ ∇
 .                                  (2.22) 

Where ∇ { }1, , T
NX X"= ∂ ∂ ∂ ∂ .   

 

2.2.4 Methods of Reliability Analysis 

 For most practical problems, the exact evaluation of the integral in Equation 

(2.7), either analytical or numerical, is not possible because N is large,  is 

generally non-Gaussian, and g(x) is highly nonlinear function of x. Therefore, some 

approximation and simulation methods have been developed, which will be discussed in 

detail in subsequent sections. These methods include mean-value methods, first-, second-, 

and higher-order reliability methods, simulation methods, response surface methods, and 

recently developed decomposition methods.   

( )fX x

 

 

 



www.manaraa.com

  14

2.3 Mean-Value Methods 

Using mean values as the approximation point is a conventional method for 

estimating the mean and standard deviation of the response, and is the basic idea behind 

mean-value methods.  These methods usually provide an approximate CDF analysis. 

2.3.1 Mean-Value Method 

Assuming that a Z-function is continuous and smooth around the mean-values 

point, the first-order Taylor’s series expansion is 

( ) ( ) (1
1

µ
i

N

MV i X
i i

ZZ Z X
X= =

⎛ ⎞∂
= + −⎜ ⎟∂⎝ ⎠

∑
X

X

X

X
µ

µ )

N

.                      (2.23) 

where , and is the mean vector of X. Since 

the Z

1{ , , }T
NX X= ∈X " \

1
{µ , ,µ }

N

T
X X=Xµ "

MV1 function is linear and explicit, its CDF, as well as the reliability analysis, can be 

computed effectively.   

For nonlinear g-functions, the solution based on (2.23) is, in general, not 

adequately accurate.  Higher-order expansions need to be considered, for example, the 

second-order approximations 

    ( ) ( ) (
2 2

2 1 2
1

1
2 i

N

MV MV i X
i i

ZZ Z X
X= =

⎛ ⎞∂
= + −µ⎜ ⎟∂⎝ ⎠

∑
XX

X X
µ

) ,              (2.24) 

and 

 ( ) ( ) ( )(
2

3 2
, 1

i

N

MV MV i X i X
i j i j
i j

ZZ Z X X
X X=

≠ =

⎛ ⎞∂
= + −µ −µ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

∑
XX

X X

µ

)j
,      (2.25) 

where ZMV2 and ZMV3 are partial and full second order Taylor expansions. Third and 

higher-order approximations are not recommended because of a lack of efficiency and 
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numerical issues.  Based on Equation (2.23), or (2.24) and (2.25), the mean value 

probabilistic solution is defined as mean-value (MV) method. 

 

2.3.2 Advanced-Mean Method 

The Advanced Mean-Value (AMV) method was proposed by Wu (1990) 

primarily to improve the MV solution with slightly more computational effort.  By using 

a simple correction term, AMV compensates for the expansion truncation error.  The 

AMV model can be simply expressed by 

 ( ) ( ) ( )AMV MV MVZ Z H Z= +X X ,                                      (2.26) 

where ( )MVH Z  is defined as the correction term for higher order expansion terms. 

( )MVH Z  denotes the difference between the exact value of Z computed at the MPP, and 

the approximation of Z computed at the MPP determined by the MV method.  The 

accuracy of AMV depends on the accuracy of the approximate MPP.   

 

2.3.3 Advanced-Mean Value Method+ 

The AMV procedure can be considered an MV method in the first iteration when 

the linearization is performed at the mean point.  If subsequent iterations are carried out 

to improve results, the AMV procedure becomes the so-called AMV+.  The AMV+ 

procedure uses the MPP, but not the mean point in the original x-space as the expansion 

point in subsequent iterations (Wu et al., 1994).  Iterations will continue to perform until 

the approximate MPP converges to the exact value.     

 

 



www.manaraa.com

  16

2.4 First-, Second-, and Higher-Order Reliability Methods 

2.4.1 Transformation 

2.4.1.1 Independent Random Variables 

Consider a random component Xi with CDF ( ) , 1, ,
iX iF x i N= " .  Let Ui be a 

standard normal random variable with its CDF ( )iuΦ .  From the definition 

( ) [ ]
iX i i iF x P X x p≡ ≤ = ,                                              (2.27)  

If  

     ( ) [ ]Pi i iu U u pΦ ≡ ≤ = ,                                               (2.28) 

then the mapping between xi and ui can be obtained from 

( ) ( )
ii Xu F xΦ ≡ i ,                                                   (2.29) 

which yields 

  ( )1
ii Xu F x−

i⎡ ⎤= Φ ⎣ ⎦                                                  (2.30) 

or the inverse mapping 

( )1
ii X ix F u−= Φ⎡ ⎤⎣ ⎦ .                                                (2.31) 

As long as can be inverted, either analytically or numerically, a performance 

function described in the x-space can easily be mapped onto u-space. 

( )
iX iF x

 

2.4.1.2 Dependent Random Variables – Rosenblatt Transformation 

Consider an N-dimensional random vector X with a generic joint distribution 

function .  Let ( )FX x :T →X U  denote a transformation from x-space to u-space, 
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where U is an N-dimensional standard Gaussian random vector.  According to Rosenblatt 

(1952), the transformation is given by 

 

1

2

1
1 1

1
2 2 1

1
1 2 1

( )

( )
:

( , , , )
N

X

X

N X N

u F x

u F x x
T

u F x x x x

−

−

−
−

⎧ ⎡ ⎤= Φ ⎣ ⎦⎪
⎪ ⎡ ⎤= Φ ⎣ ⎦⎪
⎨
⎪
⎪

N⎡ ⎤= Φ⎪ ⎣ ⎦⎩

# # #

"

, (2.32) 

where 1 2 1( , , , ), 2, ,
iX i iF x x x x i N− =" "

1i

 is the CDF of Xi conditional on 

1 1 2 2 1,  ,  ,  iX x X x X x−= = =" −  and ( )Φ i  is the CDF of a standard Gaussian random 

variable.  The conditional distribution function 1 2 1( , , ,
iX i iF x x x x −" )  can be obtained from  

 1 2

1 2 1

1 2 1
1 2 1

1 2 1

( , , , , )
( , , , )

( , , , )

i

i

i

i

x

X X X i
X i i

X X X i

f x x x d
F x x x x

f x x x
−

−−∞
−

−

ξ ξ
= ∫ "

"

"
"

"
, (2.33) 

where 
1 2 1 1 2 1( , , , )

iX X X if x x x
− −" "  is the joint probability density function of 

.  The inverse transformation can be obtained in a stepwise manner as 1 2 1{ , , , }T
iX X X −"

 

[ ]
1

2

1
1 1

1
2 2 11

1
1 2 1

( )

( )
:

( , , , )
N

X

X

N X n N

x F u

x F u x
T

x F u x x x

−

−
−

−
−

⎧ = Φ
⎪

= ⎡Φ ⎤⎪ ⎣ ⎦
⎨
⎪
⎪ = ⎡Φ ⎤⎣ ⎦⎩

# # #

"

. (2.34) 

 

2.4.1.3 Dependent Random Variables – Nataf Transformation 

Consider a dependent random vector X, for which the marginal cumulative 

distribution functions ( ) , 1, ,
iX iF x i N= "  and the correlation coefficient matrix 
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{ }ρij=XP  are known.  It may have been described by an approximate but completely 

specified joint probability distribution function ( )FX x .  X may also be transformed to 

the standard normal random vector Y  in y-space, given by 

   ( )1
iiy −

X iF x⎡ ⎤ .                                                     (2.35) = Φ ⎣ ⎦

}where  is an N-dimensional standard normal random vector with joint 

probability density function 

{ 1, , T
NY Y=Y "

( ),Nφ Yy P  having zero means, unit standard deviations, and 

correlation coefficient matrix { }ρij′=YP .  Then, given the usual rules for transformation 

of random variables, the approximate joint density function  in x-space is (Nataf, 

1962) 

( )fX x

( )( ) ,Nf = φX x ⋅Yy P J                                               (2.36) 

with  

( )
( )

( ) ( ) (
( ) ( ) ( )

)
1 21 21 2

1 2 1 2

, , ,
, , ,

NX X XN

N N

Nf x f x f xy y y
x x x y y y

⋅∂
= =
∂ φ φ

J
""

" "φ
.               (2.37) 

To solve YP  in Equation (2.36), consider any two random variables ( ),i jX X  and the 

correlation coefficient between them as  

( )2 , ;
i j

ij
ij i j i j i j ij i j

X X

Z Z z z y y d
∞ ∞

−∞ −∞

γ
′⎡ ⎤ρ = = = φ ρ⎣ ⎦σ σ ∫ ∫E� y dy ,         (2.38) 

where ( )µ σ
ii i XZ X= −

iX .  Here the correlation coefficient matrix { }ρij′=YP can be 

obtained from the known { }ρij=XP  iteratively from (2.38). 
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Once YP  is determined for any pair of ( ),i jX X , Equation (2.35) can be used to 

obtain the correlated standard normal distribution in y-space.  Furthermore, an orthogonal 

transformation can be used to obtain independent standard normal distribution in u-space, 

which will be discussed in the following.   

 

2.4.1.4 Transformation between Dependent and Independent Normal Variables  

Let ( 1, , N )X X=X "  be an N-dimensional normal random vector with joint 

probability density function ( ),nφ Xx C  having mean vector Xµ , and covariance matrix 

XC .  Let be an N-dimensional independent standard random vector.  

Then, the transformation between X and U can be expressed by 

( 1, , NU U=U " )

= + XX AU µ .                                                   (2.39) 

Since XC  is positive definite and symmetric, the orthogonal transformation matrix  

( 1T −=A A ) can be defined by 

T=XC AA .                                                    (2.40) 

Because XC  is known, Equation (2.40) can be obtained by Cholesky decomposition.   

 

2.4.2 Most Probable Point (MPP) 

A most probable point (MPP) is defined as the point ∗u  on the limit state surface 

closest to the origin in standard normal space (Figure 2.1).  This point leads to the 

definition of the reliability index β as 
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β ∗= u .                                                   (2.41)   

The determination of MPP ∗u  can be formulated as a constrained optimization problem, 

defined by  

( )

min

s. t.  0
N

g
∈

=
u

U

u

u
R ,                                           (2.42) 

where 2

1

N

i
i

u
=

= ∑u is the Euclidean L2-norm of the N-dimensional vector u and ( )gU u is 

the transformed performance function in u-space. 

2.4.2.1 Early Approaches 

The constrained optimization problem defined in (2.42) is equivalent to  

 ( )
,

min ,
N

L
∈ λ∈

λ
u

u
R R

,                                              (2.43) 

where λ is the Lagrange multiplier and  

( ) ( )21,
2

L λ = + λ Uu u g u .                                 (2.44)   

Assuming the optimization solution is ( ),∗ ∗λu  and sufficient smoothness is found for the 

function involved, the partial derivatives of ( ),L λu  have to be zero at the solution point.  

Hence 

( ) 0g∗ ∗ ∗+ λ ∇ =Uu u                                       (2.45) 

and 

  ( ) 0g ∗ =U u .                                            (2.46) 
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The positive Lagrange multiplier λ can be obtained from (2.45), and then substituted in 

the same equation.  This yields the first order optimality condition: 

( ) ( ) 0g g∗ ∗ ∗ ∗⋅ ∇ + ⋅∇U Uu u u u = .                        (2.47) 

This condition means that the normal to the limit state surface at the MPP should point 

towards to the origin of u-space.  Many standard algorithms are available for solving the 

Lagrange optimal problem defined in (2.43).  However, the first-order method may 

converge to an infeasible point; Newton’s method requires second-order information.  

These difficulties suggest that the Lagrange method may not be a good optimization 

technique for the reliability problem.  

 

2.4.2.2 Hasofer-Lind Method 

Hasofer and Lind (1974) proposed an iterative algorithm to solve (2.43), which 

was later used by Rackwitz and Fiessler (1978) in conjunction with probability 

transformation techniques.  This algorithm generates a sequence of points ui from the 

recursive rule 

( ) ( )
( )

( )
( )1

T
i i i i

i
i i

g g g
g g+

⋅ −
= U U U

U U

u u u u
u

u u
∇ ∇

∇ ∇
.                              (2.48) 

At the current iterative point ui, the limit state surface is linearized, i.e. replaced by the 

trace in the u-space of the hyperplane tangent to ( )gU u at i=u u .  Equation (2.48) is the 

solution to this linearized optimization problem, which corresponds to the orthogonal 

projection of ui onto the trace of the tangent hyperplane.  The Hasofer-Lind method is 

widely used due to its simplicity.  However, it may not converge in some cases. 
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2.4.2.3 Improved Hasofer-Lind method 

Zhang and Der Kiureghian (1995,1997) proposed an improved version of the 

Hasofer-Lind method for which unconditional convergence could be proven.  It is based 

on the following reformulation of the recursive definition of Equation (2.48): 

1 , 1i i i i i+ = + λ λ =u u d                                       (2.49)                    

and  

( ) ( )
( )

( )
( )

T
i i i i

i i
i i

g g g
g g
⋅ −

= −U U U

U U

u u u u
d u

u u
∇ ∇

∇ ∇
,                      (2.50) 

where  are the searching direction and the step size respectively. The original 

Hasofer-Lind method can be improved by computing an optimal step size .  For 

this purpose, a merit function 

 and i λd i

1iλ ≠

( )m u is introduced.  During each iteration, after computing 

(2.50), a line search is carried out to find iλ such that merit function is minimized. That 

is, find  to satisfy minimizing iλ ( )im i+ λu d .  The unconstrained optimization problem 

(Equation (2.43)) is replaced by the problem of finding a value  such that the merit 

function is sufficiently reduced (if not minimal).  The so-called Armijo rule (Luenberger, 

1986) is an efficient technique, which is written by 

iλ

( ) ( ) ( ){ }2
max k k k

i i i ik
b m b m ab m

∈
λ = + − ≤ − ∇u d u u

R i

)1

,             (2.51) 

where  are pre-selected parameters and k is an integer.  (, 0,a b∈

 Zhang and Ker Kiureghian (1995,1997) proposed the following merit function: 

( ) ( )21
2

m c g= + Uu u u .                                        (2.52) 
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This expression has two properties: 

(1) The search direction d defined in (2.50) satisfies:  

( ) ( )
,  0 provides Tm c

g
∀ ∇ ⋅ ≤ >

∇ U

u
u u d

u
.                          (2.53) 

(2) The merit function attains its minimum at the MPP provided that the same 

condition is fulfilled on  c . 

Both properties are sufficient to ensure that the global algorithm defined by (2.49), (2.50) 

and (2.51) is unconditionally convergent (Luenberger, 1986). 

 

2.4.2.4 Others 

With the exception of the Hasofer-Lind method and its variants, Liu and 

Kiureghian (1986,1991) discussed other algorithms in structural reliability analysis, 

including the gradient projection method, the augmented Lagrange method, and 

sequential quadratic programming (SQP) method.  Based on results of numerical 

examples, they recommended the SQP and improved/modified Hasofer-Lind method 

because of their convergence and computational efficiency. 

Other recently proposed intelligent algorithms for reliability analysis include 

neural networks (Shao and Morutso, 1997), and evolutionary algorithms (Elegbede, 

2005).  These methods still need further investigation.  
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2.4.3 First-Order Reliability Method 

The first–order reliability method (FORM) is based on the first-order linear 

approximation of the limit state surface g(x) = 0, tangent to the closest point of the 

surface to the origin. The determination of this point involves nonlinear constrained 

optimization, and is usually performed in the standard Gaussian image of the original 

space, which can be obtained by the Rosenblatt transformation (Rosenblatt, 1952).  The 

FORM algorithm involves several steps; they will be described briefly assuming a 

generic N-dimensional random vector X. 

First, the space x of uncertain parameters X is transformed into a new N-

dimensional u space of independent standard Gaussian variables U.  The original limit 

state g(x) = 0 then becomes mapped into the new limit state gU(u) = 0 in u space. 

Second, the point u* on the limit state gU(u) = 0 that has the shortest distance to 

the origin of the u space is determined by using an appropriate nonlinear optimization 

algorithm.  This point is referred to as the design or beta point, and has a distance bHL 

(known as the reliability index) to the origin of u space.  

Third, the limit state, gU(u) = 0, is approximated by a hyperplane ( linear or first-

order), gL(u) = 0, tangent to it at the design point. 

Finally, the probability of failure PF is thus approximated by 

 in FORM and given as: ( ),1 0F LP P g= ⎡⎣ U < ⎤⎦

                     ( ) ( ),1 0 βF LP P g= < = Φ −⎡ ⎤⎣ ⎦U HL ,                                        (2.54) 

where  
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                                           ( ) 21 1exp ξ
22π

u
u

−∞

⎛ ⎞Φ = −⎜ ⎟
⎝ ⎠∫ ξd                                        (2.55) 

is the cumulative distribution function (CDF) of a standard Gaussian random variable. 

 

2.4.4 Second-Order Reliability Method 

Second–order reliability methods (SORM) are proposed as a natural extension of 

FORM.  The idea is to approximate the limit state surface by a quadratic surface whose 

probabilistic content is known analytically. 

2.4.4.1 General Quadratic Approximation 

For a standard Gaussian random vector ( ), NN ∈6U 0 I \ , its joint PDF is 

( ) ( ) ( ) 2
12 exp
2

N
Tf − ⎡ ⎤= φ = π −⎢ ⎥⎣ ⎦

U u u u u .                               (2.56) 

Assuming that gU(u)is continuous , smooth, and at least twice differentiable, its second-

order Taylor series expansion about MPP (u*) is 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )* * * * * *1
2

T T

U U U Qg g g g≅ + − + − − ≡u u u u u u u H u u u∇ u

)

,      (2.57) 

where is the gradient vector and ( *
Ug u∇ ( )*H u  is the Hessian matrix, both evaluated 

at the MPP. Since , ( )* 0g =U u

( ) ( )* * * *1 1
2 2

T T T T T
Q U Ug g g⎛ ⎞= − + − − + +⎜ ⎟

⎝ ⎠
u u u Hu u H u u∇ ∇ Hu ,           (2.58) 

in which the argument  “ ” has been dropped for notational convenience. At the MPP ( )*u
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*
*U

HL U

g
g

= − =
β
u ∇

α
∇

,                                       (2.59) 

where *
HLβ = u and  is unit vector to MPP. Dividing equation (2.59) by *α gU∇  yields 

( ) 2
* * * * 1

2 2
Q T T T THL

HL HL
U U U

g
g g g

⎛ ⎞ ⎛ ⎞β
= β + − +β +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∇⎝ ⎠ ⎝ ⎠

u H H u uα α α α
∇ ∇ Ug

H u
∇

.    (2.60) 

 

2.4.4.2 Parabolic Approximation 

Construct an orthogonal matrix ( )N N∈ ×R \ \L , whose Nth column is , i.e., *α

1
∗⎡ ⎤∈ ⎣ ⎦R R α ,                                                (2.61) 

where  satisfies ( )1
1

N N−∈ ×R \ \L

*
1 1 ( 1

T
N )× −=R 0α .                                           (2.62) 

The matrix R  can be obtained by Gram-Schmidt orthogonalization. 

Consider the orthogonal transformation 

=u Rv ,                                                 (2.63) 

and partitioning 

Nv
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

v
v

�
,                                               (2.64) 

where 

( ) 1
1 1, N

N NN −
− − ∈V 0 I� 6 \ and .              (2.65) ( )0,1NV N6

Hence, equation (2.60) becomes 
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( ) 2
* * *

2
Q T THL

HL N HL

g
v

g g g
⎛ ⎞ ⎛β

= β + − +β +⎜ ⎟ ⎜⎜ ⎟ ⎜
⎝ ⎠ ⎝U U U

u H H Rv v Avα α α
∇ ∇ ∇

T⎞
⎟⎟
⎠

,      (2.66) 

where ( )1
2

T
N NR HR

g
= ∈ ×

U

A
∇

\ \L . 

Consider the partition of A  

1 1

1

N N

N NNA
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

A AA
A

� �
� � ,                                                   (2.67) 

where ,( )1 1
1

N N
N

− −
− ∈ ×A� \ \L ( )1

1 1
T N

N N
−= ∈ ×A A� � \ \L 1 , and . In view of this 

partition, the general quadratic equation reads 

NNA ∈� \

( ) 2
* * *

1 12
2

Q T T THL
N HL N HL N N NN

g
v v

g g g−

β
= − +β + + −β + +

U U U

u H Hv A v Rv A vα α α
∇ ∇ ∇

� �� � � 2
NA v� .  (2.68) 

Madsen et al. (1986) proposed a parabolic approximation of (2.68) by neglecting 

any cross terms and second order terms of  and nv HLβ .  Only the first three terms are left, 

leading to 

                     1
Q T

N HL N

g
v

g −≅ − +β +
U

v A v
∇

� �� � .                                      (2.69) 

This parabolic approximation has been used by many researchers, such as, Breitung 

(1984), Hohenbeichler and Rackwitz(1988), Tvedt (1990), Cai and Elishakoff(1994), 

Koyluoglu and Nielsen (1994), Adhikari (2004), and others. 

 

 

 

 



www.manaraa.com

  28

2.4.4.3 Failure Probability Evaluation - Asymptotic Solutions  

Using (2.69) as the parabolic approximation of the failure surface, the second 

order estimate of the failure probability is 

, 10Q T
F II N HL N

g
P P P V

g −

⎡ ⎤
⎡ ⎤= < ≅ > β +⎢ ⎥ ⎣ ⎦

⎣ ⎦U

V A V
∇

� �� �

�

 .                    (2.70) 

Define a random variable by 1: NZ −\ 6 \

1
T

NZ −≡V A V�� ,                                                   (2.71) 

as the quadratic mapping of a standard Gaussian vector ( ) 1
1 1, N

N NN −
− − ∈V 0 I� 6 \ . 

Therefore  

[ ] ( ),F II N HL HLP P V Z Z≅ > β + = Φ −β −⎡ ⎤⎣ ⎦E .                      (2.72) 

Unfortunately, the exact probability density function of the quadratic form Z is in general 

not available in closed form.  For this reason, it is difficult to calculate the 

expectation ( )HL ZΦ −β −⎡⎣E ⎤⎦

)

 analytically.   

The function ( HL ZΦ −β −  is continuous and differentiable (of any order) for 

.  Expanding  z∈\ ( )ln HL ZΦ −β −⎡ ⎤⎦⎣ 0Zat = and keeping only the linear term 

( ) ( ) ( )
( )

ln ln HL
HL HL

HL

Z Z
φ β

Φ −β − ≅ Φ −β −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ Φ −β
.                       (2.73) 

where ( ) 21 1exp
22

u ⎛φ = −⎜π ⎝ ⎠
u ⎞
⎟  is the probability density function (PDF) of  a standard 

Gaussian random variable.  Hence,  
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( ) ( ) ( )
( )

exp HL
HL HL

HL

Z Z
⎡ ⎤φ β

Φ −β − ≅ Φ −β −⎢ ⎥Φ −β⎣ ⎦
.                       (2.74) 

The moment generation function ( )ZM s  of a random variable Z is defined as 

( ) ( )expZM s ≡ sZ⎡ ⎤⎣ ⎦E .                                       (2.75) 

For a quadratic form  of Gaussian variables, it is elementary to show 1
T

NZ −≡V A V�� �

( ) ( )
1
2

1exp 2Z NM s sZ s
−

− −≡ = −⎡ ⎤⎣ ⎦ I A�E 1N .                      (2.76) 

From Equation (2.72) 

( )

( ) ( )
( )

( ) ( )
( )

,

1
2

1 1

exp

2

F II HL

HL
HL

HL

HL
HL N N

HL

P Z

Z

−

− −

≅ Φ −β −⎡ ⎤⎣ ⎦
⎡ ⎤⎛ ⎞φ β

≅ Φ −β −⎢ ⎥⎜⎜ Φ −β
⎟⎟⎢ ⎥⎝ ⎠⎣ ⎦

φ β
=Φ −β +

Φ −β
I A�

E

E .                       (2.77) 

Let  be the eigenvalues of 1 1ia ,i , ,N= " − 1N−A� , it can be proved that eigenvalues of 

( ) ( )( )1 12N HL HL− −+ φ β Φ −β NI A�  are ( ) ( )( )1 2 , 1, , 1HL HL ia i N+ φ β Φ −β = −" .  Thus, 

Equation (2.77) can be rewritten as 

( ) ( )
( )

1
1 2

,
1

1 2
n

HL
F II HL i

i HL

P a
−

−

=

⎛ ⎞φ β
≅ Φ −β +⎜⎜ Φ −β⎝ ⎠

∏ ⎟⎟ .                       (2.78) 

Hohenbichler and Rackwitz (1988) gave the improved asymptotic solution as 

( ) ( )
( )

1
1 2

,
1

1
n

HL
F II HL i

i HL

P
−

−

=

⎛ ⎞φ β
≈ Φ −β + κ⎜⎜ Φ −β⎝ ⎠

∏ ⎟⎟ ,                         (2.79) 
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which is the same formula as (2.78), if the principal curvatures at the MPP are denoted 

by .  The sign convention is such that curvature is positive when the surface 

curves are away from the origin. 

2i aκ = i

Further, consider when HLβ →∞ , so that 
( )
( )

HL
HL

HL

φ β
→β

Φ −β
.  Equation (2.79) is 

simplified as the same asymptotic solution given by Breitung (1984), which is 

( ) ( )
1

1 2

,
1

1
n

F II HL i HL
i

P
−−

=

≈ Φ −β + κ β∏ .                               (2.80) 

 

2.4.4.4 Least-Squares’ Non-Asymptotic Solution

Consider an approximation of ( )HL ZΦ −β −  by  

( ) ( )1 2expHL Z c cΦ −β − ≅ − Z

)

,                                   (2.81) 

such that the error in this approximation is in some sense minimized. The error in 

representing ( HL ZΦ −β −  by (2.81) is given by  

( ) ( ) ( )1 2 1 2; , expHLZ c c Z c c Zε = Φ −β − − − .                                (2.82) 

Define the objective function 

( ) ( ) ( ) ( )2 2
1 2 1 2 1 2, ; , expHLc c z c c dz z c c z dzΨ = ε = Φ −β − − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫ ∫\ \

.        (2.83) 

To minimize (2.83) and simultaneously satisfy  

( ) ( )1 2 1 2

1 2

, ,
0 and 0

c c c c
c c

∂Ψ ∂Ψ
= =

∂ ∂
.                                  (2.84) 
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Further simplification of Equation (2.85) reveals that a system of nonlinear equations 

must be solved to obtain optimal parameters .  An exact solution of (2.84) does 

not exist.  However, a numerical solution can be obtained easily using widely available 

nonlinear equation solvers (MATLAB, IMSL, et al.), Hence, the SORM failure 

probability estimate is (Adhikari, 2004) 

1 and c 2c

( )
1

1 1 2
2

, 1 1 2 1 1 2
1

2 1
N

F II N N i
i

P c c A c c
−−−

− −
=

≅ + = + κ∏I � ,                  (2.85) 

where  are the principal curvatures. , 1, ,i i Nκ = −" 1

The least-squares’ method degenerates to Breitung’s and Hohenbichler’s 

asymptotic solutions when HLβ →∞ , ( ) ( ) ( )1 2,HL HLc c→Φ −β → φ β Φ −βHL  

(Hohenbichler’s) or 2 HLc →β  (Breitung’s). 

 

2.4.4.5 Other Non-Asymptotic Solutions

For parabolic failure surface, the only sources of error in Equation (2.72) are from 

the approximation of ( HL )ZΦ −β −  by first order Taylor expansion, which is 

asymptotically correct when HLβ →∞ .  If this condition is not well satisfied, other 

methods exist to improve this approximation.  

Tvedt (1990) extended Breitung’s asymptotic solution to obtain a three-term 

solution given by 
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( ) ( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

1 1
2

,
1

11 11
22

1 1

11 11
22

1 1

1

1 1 1

1 1 Re 1

N

F II HL i HL
i

N N

HL HL HL i HL HL i
i i

N N

HL HL HL HL i HL HL i
i i

P

i

−
−

=

− − −−

= =

− − −−

= =

≅ Φ −β + κ β

⎡ ⎤
+ β Φ −β −φ β + κ β − + β + κ⎡ ⎤ ⎢ ⎥⎣ ⎦

⎣ ⎦
⎡ ⎤⎡ ⎤

+ β + β Φ −β −φ β + κ β − + β + κ⎡ ⎤ ⎢ ⎥⎢ ⎥⎣ ⎦
⎣ ⎦⎣ ⎦

∏

∏ ∏

∏ ∏

,   (2.86) 

where  1i = − . It can be shown that second and third terms of (2.86) vanish when 

, which results in only the first term remaining: Breitung’s asymptotic solution 

(2.80).  Tvedt also derived an alternative formulation in a complex domain for a general 

quadratic failure surface; however, because this formulation is not in closed form, 

numerical integration is needed. 

HLβ →∞

Koyluoglu and Nielsen (1994) derived a series solution for SORM using higher-

order approximations of ( )HL ZΦ −β − . 

( )
1

1 0 1

2 2
1 1 1

11 2 1
1 1 10 1 0 1 0 1

3 2
1 1

3 1
1 1 10 1 0 1 0 1

1
1

1 11 2
2 1 4 1 1

1 2
8 1 1 1

N

F ,II HL
i i ,

N N N
k k k

, ,
k k kk , k , k ,

N N N
k k k

,
k k kk , k , k ,

P
c

c c
c c c

c
c c c

−

=

− − −

= = =

− −

= = =

≅ Φ −β
+ κ

⎡ ⎤⎧ ⎛ ⎞ ⎛ ⎞κ κ κ⎪ ⎢ ⎥× + + +⎜ ⎟ ⎜ ⎟⎨ + κ + κ + κ⎢ ⎥⎪⎩ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞ ⎛ ⎞κ κ κ
+ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

+ κ + κ + κ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∏

∑ ∑ ∑

∑ ∑
3

1 1

1 0 1

12
1

N
k

k k ,c

− −

=

⎫⎡ ⎤⎛ ⎞ ⎛ ⎞κ ⎪⎢ ⎥⎜ ⎟ + +⎜ ⎟ ⎬⎜ ⎟ + κ⎢ ⎥⎝ ⎠ ⎪⎝ ⎠⎣ ⎦ ⎭
∑ ∑ "

, (2.87) 

where are coefficients that can be expressed solely in terms of i , jc HLβ .   

Cai and Elishakoff (1994) also derived a series solution for a parabolic failure 

surface based on the Taylor expansion of ( )HL ZΦ −β −  as 

( ) (
2

,
1 exp

22
HL

F II HLP D
⎛ ⎞β

≈ Φ −β + − + + +⎜ ⎟
π ⎝ ⎠

")1 2 3D D  ,                         (2.88) 
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where      

( )

1

1
1

1 1
2

2
1 , 1,

1 1 1
2 3 2

3
1 , 1, , , 1,

1 3
2

1 1 15 9
6

N

i
i

N N

HL i i j
i i j i j

N N N

HL i i j i
i i j i j i j k i j k

D

D

D

−

=

− −

= = ≠

− − −

= = ≠ = ≠ ≠

= κ

⎡ ⎤
= − β κ + κ κ⎢ ⎥

⎣ ⎦

j k

⎡ ⎤
= β − κ + κ κ + κ κ κ⎢ ⎥

⎣ ⎦

∑

∑ ∑

∑ ∑ ∑

    .   (2.89) 

The series solution also converges to an exact solution of failure probability for a 

parabolic failure surface. 

 

2.4.5 Higher-Order Reliability Method 

For those cases, in which the limit-state surface has a large curvature (a high 

nonlinearity) around the MPP, both FORM and SORM can have large errors in their 

estimates of failure probability.  For example, if the MPP is an inflection point (cubic 

form), or the limit-state surface is a flat hyperplane around the MPP, then curvature-fitted 

parabola of SORM is reduced to the tangent hyperplane, thus providing no improvement 

over FORM.  Wang and Grandhi (1998) proposed a higher-order reliability method 

(HORM), which can be used for problems with highly nonlinear limit state functions, or 

with an inflection point of MPP.  The flow chart in Fig. 2.2 illustrates the procedure of 

this method.  In the rotated standard Gaussian space, two-point adaptive nonlinear 

approximation was used to approximate highly nonlinear limit state functions, and then 

based on the approximation given by Koyluoglu and Nielsen (1994) for 

( ) ( )HL ZΦ β + −Φ βHL , the failure probability by numerical integrations was calculated.  
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In Figure 2.2, when m = 2, this method is simplified to the same SORM solution 

proposed by Koyluoglu and Nielsen (1994). 

 

2.4.6 Multiple MPP Problems 

The previously discussed methods only consider the case of a single MPP.  If 

multiple MPPs exist, or if there are contributions from other regions around local 

minimums besides the region around a single MPP (Figure 2.3), these methods can fail to 

provide a correct estimation of failure probability.  The existence of multiple MPPs may 

cause the following problems: (1) the optimization algorithm may converge to a local 

MPP (local minimum), in which case FORM/SORM and the MPP-based method will 

miss the region of dominant contribution to the failure probability;  (2) even if the global 

MPP is found, other significant contributions to the failure probability may exist in the 

neighborhoods of other local MPPs; and (3) suppose that all MPPs are identified 

successfully, system FORM/SORM may not be sufficient accurate if there are highly 

nonlinearities around these MPPs. 

To handle multiple MPPs problems, two steps need to be investigated: (1) global 

optimization techniques to find all MPPs, and (2) system reliability that consider the 

correlation of the piecewise approximation limit-state surface based on these MPPs. The 

following sections discuss possible strategies to solve multiple MPPs problems. 

2.4.6.1 Multi-Point FORM/SORM 

The arbitrary failure set defined in Equation (2.7) may exhibit large calculation 

difficulties.  As suggested by Ditlevsen and Madsen (1996), this set can be approximated 
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by multiple first-order or second order approximations.  A reliability calculation can then 

be undertaken with less difficulty for a simpler failure set.  To use this method, all local 

minimums need to be determined in advance and the quality of the solution depends on 

the accuracy of these approximations.     

 

2.4.6.2 System Reliability Method 

Once multiple MPPs are identified successfully, system reliability methods can be 

used to estimate the failure probability.  If the failure region is given by an intersection of 

failure domains, system reliability can be estimated using Equation (2.16).  If the failure 

domain is a union of failure domains, a bound technique can be used, as described in 

Equation (2.43).  More complicated failure regions can also be considered, which are 

discussed in detail in section 2.2.2.  

 

2.4.6.3 Sampling Based MPP Search 

Thacker (2001) proposed a simple sampling technique to locate all MPPs for a 

given level, and then the system approach can be used.  The procedure runs as follows: 

(1) estimate the probability of failure using coarse sampling; (2) convert the realizations 

in the failure region to u-space (standard Gaussian space); (3) evaluate the distance to the 

origin for each realization; and (4) sort the results and report those realizations with the 

shortest distance.  Although this method is not very efficient, since the sampling 

technique is much easier and more stable, it was implemented with structural reliability 

software such as NESSUS.  
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2.4.6.4 Multiple Linearization 

            Mahadevan and Shi (2001) proposed a simple multipoint linearization method for 

nonlinear reliability analysis in order to improve the failure probability approximation of 

FORM.  The method is based on four main concepts: (1) approximate the limit state 

using multiple hyperplanes; (2) search for the multiple linearization points on the limit 

state; (3) seek computational efficiency through the investigation of correlated 

hyperplane; (4) estimate the failure probability through union and/or intersection 

operations, depending on the limit state definition.  The difficulty with this method is 

how to select and search the multiple linearization points on the limit state. 

 

2.4.6.5 “Barrier” Optimal Method 

In optimization theory, a common trick to find multiple solutions for a problem is 

to construct “barriers” around previously found solutions, thereby forcing the algorithm 

to seek a new solution.  In reliability problems, the objective function is the distance from 

the limit state surface to the origin.  A “barrier” around the first solution can be 

constructed by moving the limit state in the neighborhood away from the origin.  

Consequently, following “barriers” can be constructed to find the new solutions.  Der 

Kiureghian and Dakessian (1998) proposed this method to solve multiple MPPs problems 

and suggested a “barrier” function ( )iB u  like the following: 

   ( ) ( )222 ,   

0, elsewhere

i i i i i
i

s r rB
∗ ∗⎧ − − −⎪= ⎨

⎪⎩

u u u uu ≤                              (2.90) 
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where ri is the radius of the bulge and si is a positive scale factor,  is the vector form of 

ith solution. 

i
∗u

 

2.4.6.6 Global Response Surface Method 

The basic idea behind this method, proposed by Gupta and Manohar (2004), is to 

construct a response surface for the limit state by using global information, rather than 

the local information around a single MPP.  The algorithm is described as follows: (1) 

define a new set of coordinates to be identified for each point, which includes translating 

the origin a prescribed distance along one of the axes and the number of shifting origins 

depends on the number of points one wishes to identify; (2) the Bucher (1990) approach 

is subsequently used to identify the design point of the new performance function in the 

new coordinate system; (3) a polynomial response surface is obtained, whose coefficients 

are determined by a least square regression analysis; and (4) Monte Carlo simulations are 

carried out on the response surface to obtain estimates of failure probability. 

 

 
2.5 Simulation Methods 

Simulation methods that involve sampling and estimation are well known in the 

statistics and reliability literature.  Direct Monte Carlo simulation (MCS) is the most 

widely used simulation method, which involves the generation of independent samples of 

all input random variables, repeated deterministic trials to obtain corresponding simulated 

samples of response variables, and standard statistical analysis to estimate probabilistic 
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characteristics of response.  In order to improve the computational efficiency of direct 

MCS, many strategies are applied to reduce the number of samplings.  

2.5.1 Direct Monte Carlo Simulation 

 For structural reliability analysis involving a random vector { }1, , NX X=X "  

with joint density , the probability of failure defined by limit state function ( )Xf x

( )g X can be estimated from M independent samples 1, , Mx x"  generated from the 

density function .  If there are an M( )Xf x * number of samples among them satisfying 

, then the probability of failure is approximated by ( ) 0g ≤x

( ) 0F
MP P g
M

∗

= ≤ ≅⎡ ⎤⎣ ⎦X .                                       (2.91)  

and the reliability is 

1S F
M MP P

M

∗−
= − ≅ .                                         (2.92) 

By direct MCS, a large number of samples are required to estimate accurately for the 

small probability of failure. 

 

2.5.2 Importance Sampling 

The idea of importance sampling is to generate samples, not from the probability 

density function  of random vector X, but from another sampling distribution.  It is 

expected that better approximation can be obtained for probability of failure from the 

( )Xf x
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new density function.  The probability of failure defined in Equation (2.7) can be 

rewritten as 

( )
( )

( )
( )

( )
0 0F Xg g

P f d w h
≤ ≤

= =∫ ∫x x
x x x x xd ,                         (2.93) 

where ( ) ( ) ( )Xw f h=x x x .  By using the importance sampling method with an M 

number of samples, the probability of failure is given by 

( ) ( )(
1

1 0
M

F i
i

P w g
M =

)i= ≤∑ x x .                             (2.94) 

A simple and widely employed approach of importance sampling is to move the sampling 

center from the origin in standard Gaussian space to the design point (MPP) on the failure 

surface (Scheller and Stix, 1987).  Other sampling distribution and sampling centers were 

discussed by Engelund and Rackwitz (1993). 

 

2.5.3 Stratified Sampling 

In stratified sampling, the domain of integration is divided into several regions 

(Melcher, 1999).  Emphasis can be attributed by implementing more simulation in 

regions that contribute to the failure event.  Consequently, the total domain of integration 

can be divided into m regions, i.e., 1 2, , , mR R R" .  Using the total probability theorem, the 

probability of failure can be estimated as 

 ( ) ( )
1 1

1 jNm

F j
j ij

P P R
N= =

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
∑ ∑ x ,                                      (2.95) 
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where  is the indication function with respect to the performance 

function , is the failure probability of region R

( ) ( )
( )

0, if 0
1, if 0

g
g

>⎧⎪= ⎨ <⎪⎩

x
x

x

( )g x ( )jP R j, and Nj is the number of 

simulations performed in region Rj.  Since the failure region may not be known in 

advance, a trial and error method is necessary to implement this strategy. 

 

2.5.4 Directional Simulation 

Consider a reliability problem with a limit state function ( )g X  involving N 

normally distributed random variables.  If length R and direction A of a vector R=X A  

are defined, then R2 is Chi-square distributed with the CDF ( )2
N rχ  having N degrees of 

freedom.  Probability of failure defined in Equation (2.7) can be given by an integration 

of the conditional failure probability in the direction =A a  as (Bjerager, 1988) 

( ) ( )
( ) ( )

( ) ( )
All direction

2 2

All direction

0 0

0

1

F

A

N a A

P P g P g R

P g R f d

r f dχ

= ≤ = ≤⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

= ⎡ ≤ = ⎤⎣ ⎦

⎡ ⎤= −⎣ ⎦

∫
∫

X A

a A a a

a a

a ,                 (2.96) 

where a is a realization of a random unit vector A uniformly distributed on the N 

dimensional unit hypersphere ΩN and centered around the origin, and ( )Af a is the 

uniformly density function, given by 

( ) ( )
/ 2

/ 21
2A N

N
f

S π
Γ

= =a ,                                               (2.97) 
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where S is the surface area of ΩN , ( )Γ i  is the Gamma function, and ra is the distance 

from the origin to the limit state surface in the direction a.  Suppose the unit hypersphere 

is divided evenly into M subsurfaces with the same area S / M and a representative 

direction ai.  From Equation (2.97), the failure probability can be approximated by 

( )2 2

1

1 1
i

M

F N
i

P
M

χ
=

r⎡ ⎤≅ −⎣ ⎦∑ a .                                      (2.98) 

The key issue for this method is to generate M evenly distributed ai directions.  

There are two approaches available:  (1) generate M vectors of N independent Gaussian 

random variables and normalize these vectors to unit length; or (2) generate M vectors of 

N independent uniform random variables by using the rejection method, such that a 

vector is retained only if its length is no greater than one, in which case all vectors are 

normalized.  The directional simulation method is very efficient, because the distance 

from the origin to the limit state surface in any direction can be obtained efficiently, as 

pointed out by Ditlevsen (1990). 

 

2.5.5 Latin Hypercube Sampling 

Latin hypercube sampling, first proposed by McKay (1979) and further developed 

by Stein (1987) and Olsson and Sandberg (2002), uses a stratified sampling procedure to 

sample the values of the random variables from their probability density functions.  For a 

problem involving N random variables, if M is the required number of samples, then an 

M × N matrix P can be created, in which each of the N columns is a random permutation 
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of 1, 2, , M" , and an M × N matrix R of independent random numbers from the uniform 

(0,1) distribution are established by standard MCS.  A matrix S is obtained as 

(1
M

= − )S P R .                                            (2.99) 

Then, realization of the random vectors become 

( )1, , ,  1, ,i i iNx x i M= =x " " ,                            (2.100) 

in which (1
jij x ij )x F S−= , where ( )1

jxF − i  is the inverse of the CDF for random variable Xj.  

There is a risk that some spurious correlation will appear, and Olsson (2003) proposed 

some methods to reduce it.   

 

2.5.6 Markov Chain Monte Carlo Simulation 

The Markov chain MCS method, also called subset simulation, was applied by Au 

and Beck (2001) to estimate small failure probability using a modified Metropolis 

algorithm (Metropolis, 1953, Fisherman, 1996).  This method transfers the evaluation of 

failure probability to the evaluation of a sequence of simulations of more frequent events 

in conditional probability spaces.  For a given failure event F, construct 

as a decreasing sequence of failure events, so that 

.  According to the definition of conditional probability, failure 

probability becomes 

1 2 mF F F F⊃ ⊃ ⊃ ="

1
,  1, 2, ,k

k ii
F F k

=
= = "∩ m
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[ ]

[ ]

1

1 1

1 1

1 2 1 3 2

m
F m ii

m m
m i ii i

m m

P P F P F

P F F P F

P F P F F P F F P F F

=

− −

= =

−

⎡ ⎤= = ⎣ ⎦
⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎣ ⎦⎣ ⎦

= ⎡ ⎤ ⎡ ⎤ ⎡ 1⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦"

∩
∩ ∩ .                    (2.101) 

The major task is to simulate the conditional samples efficiently, which was achieved 

using the modified Metropolis algorithm (Au and Beck, 2001).  This method is found 

robust up to the number of random variables and efficient in computing small 

probabilities.  However, the proposed PDFs involved in the Metropolis algorithm have to 

be carefully chosen because the spread affects the size of the region covered by the 

Markov chain samples and, consequently, the efficiency.  A small spread tends to 

increase the dependence between two successive samples due to their proximity, and an 

excessively large spread may reduce the acceptance rate and increase the number of 

repeated Markov chain samples.  In both cases, convergence could be slow.  

 

2.6 Response Surface Methods 

The practicality of reliability methods for a specific limit state depends on the 

complexity of the formulation of the limit state. Often the limit state function is not 

available in explicit form, but rather defined implicitly through a complicated numerical 

procedure, given for example by the finite element analysis. For such limit state 

formulations, the needed calculations may require prohibitive large computational efforts.  

One way to solve such complex problem is to approximate the limit state surface in a 

numerical-experimental way by using a surface in explicitly mathematical form, and then 

implementing a reliability analysis. This procedure is called the response surface method.   
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2.6.1 Basic Principle of Response Surface Method 

Let { }1, , NX X=X "  be the vector of basic random variables.  The central idea of 

the response surface method is to approximate the exact limit state function ( )g X , 

which is usually known through an algorithmic procedure, by a polynomial function 

( )ĝ X .  In practice, quadratic functions are used in the form 

( ) ( ) 2
0

1 1 1 1,

ˆ
N N N N

i i ii i ij i j
i i i j j i

g g a a x a x a x
= = = = ≠

≅ = + + +∑ ∑ ∑ ∑x x x ,              (2.102) 

where the set of coefficients { }0 , , ,i ii ija a a a=a , which correspond to the constant, linear, 

square, and cross terms, respectively, are to be determined. 

A limited number of evaluations of the limit state function are required to build 

the surface.  A reliability analysis can then be performed by means of the analytical 

expression in Equation (2.102), instead of the true limit state function.  This approach is 

particularly attractive when simulation methods such as importance sampling (Bucher 

and Bourgund, 1990) are used to obtain the reliability results. 

 

2.6.2 Building the Response Surface 

The determination of the unknown coefficients a  is performed by using the least 

squares method.  After choosing a set of fitting points ,  1, ,k k n=x " , for which the exact 

value  is computed, the error ( )ky g= xk ( )ε a , defined by  

 ,                                  (2.103) ( ) ( )( 2

1

ˆ
n

k k
i

y g
=

ε = −∑a )x
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is minimized with respect to a.  Reformulating Equation (2.103) in the form 

( ) { } { } ( )2
0ˆ 1, , , , , ,

T T
i i i j i ii ijg x x x x a a a a= ⋅ ≡ ⋅X V x a ,             (2.104) 

where .  The least squares problem becomes:  , 1, ,  and  i j N j i= " ≠

)( )( 2

1

min 
n

T
k k

i

y
=

⎧ ⎫− ⋅⎨ ⎬
⎩ ⎭
∑ V x a .                           (2.105) 

After some basic algebra (Faravelli, 1989), the solution to the above problem yields 

( ) 1T T−
=a ν ν ν y ,                                     (2.106) 

where  is the matrix whose rows are the vectors ν ( )kV x  and y is the vector whose 

components are . ( )k ky g= x

The various response surface methods proposed in the literature differ only in the 

terms retained in the polynomial expression (2.102), and the selection of the coordinates 

of the fitting points, i.e., the experimental design used in the regression analysis.  It is 

emphasized that  is required to solve (2.105).  Furthermore, the fitting points have 

to be chosen in a consistent way in order to get independent equations. 

n N≥

 

2.6.3 Various Types of Response Surface Approaches 

Early applications of the response surface method involved the so-called factorial 

experimental design.  For each random variable Xi, lower and upper values of realizations 

( ,i i )x x− +  are selected.  Overall, 2N  fitting points are defined by all possible combinations 
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{ }1 , , Nx x± " ± .  The number of fitting points increases exponentially with the number of 

random variables N involved in the reliability problem under consideration. 

In order to reduce the number of fitting points for cases in which N is large, 

Bucher and Bourgund (1990) proposed a simplified quadratic expression without cross 

terms, which is defined by only ( )2 1N +  coefficients { }0 , ,i iia a a=a .  In the first step, 

the mean vector Xµ  is chosen as the center point of the response surface.  Exact ( )2 1N +  

fitting points are selected “along the axes,” described by 

1

2

2 1

,  1, ,
,  1, ,

i i i

i i i

f i N
f i N+

=⎧
⎪ = − σ =⎨
⎪ = + σ =⎩

X

X

X

x
x e

x e

µ
µ
µ

"
"

,                              (2.107)  

where iσ  is  the standard deviation of the ith random variable,   is the ith basis vector 

of the space of parameters, whose coordinates are  

ie

{ }0, ,0,1,0, 0" " , and f is an arbitrary 

number (set to 3 by Bucher and Bourgund (1990)). 

From this first response surface, an estimate of the design point  is computed.  

Then, a new center point 

∗x

Mx  is obtained as a linear interpolation between  and Xµ
∗x  by  

( ) ( )
( ) ( )M

g
g g

∗
∗

= + −
−

X
X X

X

x x
x

µ
µ µ

µ
.                        (2.108) 

A second response surface is then generated around Mx .  As a whole, the approach 

requires only ( evaluations of the limit state function, and can thus be carried out 

for structural systems involving a great number of random variables.  Finally, importance 

sampling is used to obtain the reliability results. 

)4 3N +
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Later, Rajashekhar and Ellingwood (1993) considered the same approach by 

Bucher and Bourgund (1990) as the first two steps of an iterative procedure until full 

convergence.  They also added cross terms to the response surface definition, obtaining 

better results in numerical examples. 

Kim and Na (1997) observed that in previous research, the fitting points are 

selected around a preselected point (i.e., the mean value of the basic random vector) and 

arranged along the axes or “diagonals” of the space of parameters, without considering 

the orientation of the original limit state surface.  The authors argued that in some cases 

these procedures might not converge to the true design point.  Alternatively, they 

proposed to determine a series of linear response surfaces as follows: in each iteration, 

the fitting points used in the previous step are projected onto the previous response 

surface, and the projection points that are obtained (which are closer to the actual limit 

state surface) are used for generating the next response surface.  In each iteration, an 

approximate reliability index is readily available, since the response surface is linear.  In 

some sense, this method finds the design point without solving the minimization problem 

usually associated with FORM.  This method is called the vector projection method. 

Starting from the idea of Kim and Na (1997), Das and Zhang (2000) proposed 

enhancing the linear response surface by adding square terms.  The fitting points defining 

the final linear response surface are reused to produce the quadratic surface.  SORM 

analysis is then performed. 

Lemaire (1997) presents a synthetic summary of the response surface method and 

draws the following conclusions: (1) it is better to cast the response surface in standard 
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normal space, rather than in the original space because regression can be controlled 

better; (2) provided enough fitting points, the choice of the type of experimental design is 

not fundamental; and (3) the quality of the response surface has to be checked.  Different 

indicators are proposed to estimate the accuracy:  (1) the back-transformation of the 

fitting points from standard normal space to the original space, in order to exclude non-

physical points; (2) the conditioning of the experimental matrix  in Equation (2.106);  

(3) the quality of the regression measured by a correlation coefficient; and (4) the extent 

to which the obtained design point belongs to the original limit state surface. 

Tν ν

 

2.7 Mean-Point-based Decomposition Methods 

Recently, Rahman and Xu (2004) developed new decomposition methods that can 

solve highly nonlinear reliability problems more accurately or more efficiently than 

FORM/SORM and simulation methods.  A major advantage of these decomposition 

methods over FORM/SORM, so far they are based on the mean point of random input as 

a reference point, is that higher-order approximations of performance functions can be 

obtained without calculating the MPP or the gradients.   

2.7.1 Multivariate Function Decomposition 

Consider a continuous, differentiable, real-valued function y(x) that depends on x 

= {x1,…,xN}∈ .  Suppose that y(x) has convergent Taylor series expansion at an 

arbitrary reference point , expressed by 

NR

{ 1, , T
Nc c= =x c " }

 ( ) 2
1 1

1( ) ( ) ( )
!

jN
j

i ij
j i i

yy y x c
j x

∞

= =

∂ R= + −
∂∑ ∑x c c +              (2.109) 
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or 

( )

( )
1 2

1 2

1 1 2 21 2
1 2 1 2 1 2

1 1

3
, 0 1 2

1( ) ( ) ( )
!

1 ( ) ( )
! !

jN
j

i ij
j i i

j j
j j

i i i ij j
j j i i i i

yy y x c
j x

y x c x c R
j j x x

∞

= =

+∞

> <

∂
= + −

∂

∂
+ −

∂ ∂

∑ ∑

∑ ∑

x c c

c − +
,         (2.110) 

where the remainder 2R  denotes all terms with dimension two and higher and  the 

remainder 3R  denotes all terms with dimension three and higher. 

2.7.1.1 Univariate Approximation 

Consider a univariate approximation of y(x), denoted by 

 ,  (2.111) 1 1 1 1 1 1
1

ˆ ˆ( ) ( , , ) ( , , , , , , ) ( 1) ( )
N

N i i i N
i

y y x x y c c x c c N y− +
=

≡ = − −∑x c" " "

where each term in the summation is a function of only one variable and can be 

subsequently expanded in a Taylor series at =x c , yielding 

 ( )1
1 1

1ˆ ( ) ( ) ( )
!

jN
j

i ij
j i i

yy y x c
j x

∞

= =

∂
= + −

∂∑ ∑x c c . (2.112) 

A comparison between Equations (2.109) and (2.112) indicates that univariate 

approximation leads to the residual error 1ˆ( ) ( )y y 2R− =x x , which includes contributions 

from terms of dimension two and higher.  For sufficiently smooth y(x) with a convergent 

Taylor series, the coefficients associated with higher-dimensional terms are usually much 

smaller those with one-dimensional terms.  In that case, higher-dimensional terms 

contribute less to the function, and therefore, can be neglected.   
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2.7.1.2 Bivariate  Approximation 

In a similar way, consider the bivariate approximation 

1 1 1 2 2 2

1 2

2 1 1 1 1 1

1 1 1
1

ˆ ( ) ( , , , , , , , , , , )

( 1)( 2)( 2) ( , , , , , , ) ( )
2

i i i i i i N
i i

N

i i i N
i

y y c c x c c x c c

N NN y c c x c c y

− + − +
<

− +
=

≡

− −
− − +

∑

∑

x

c

" " "

" "
 ,  (2.113) 

of y(x), where each term on the right hand side is a function of at most two variables, and 

can be subsequently expanded in a Taylor series at =x c , yielding 

 
( )
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1 2

1 2

1 1 2 21 2
1 2 1 2 1 2
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1 ( ) (
! !
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> <

∂
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∂

∂
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∑ ∑

∑ ∑

x c c

c )−

3R

. (2.114) 

Again, a comparison of Equations (2.110) and (2.114) indicates that the bivariate 

approximation leads to the residual error 2ˆ( ) ( )y y− =x x , in which remainder 3R  

includes terms of dimension three and higher.  The bivariate approximation includes all 

terms with no more than two variables, thus leading to a higher rate of accuracy than the 

univariate approximation.   

 

2.7.1.3 Generalized S-Variate Approximation 

The procedure for univariate and bivariate representations described above can be 

generalized to an S-variate representation for any integer 1 S N≤ ≤ .  The generalized S-

variate approximation of y(x) is 

 , (2.115) 
0

1
ˆ ( ) ( 1) ( )

S
i

S
i

N S i
y

i −
=

− + −⎛ ⎞
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⎝ ⎠
∑x S iy x
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where 
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. (2.117) 

Using a multivariate function theorem, it can be shown that  in Equation (2.115) 

consists of all terms of the Taylor series of  that have less than or equal to S  

variables.  The expanded form of Equation (2.115), when compared with the Taylor 

expansion of , indicates that the residual error in the S-variate approximation is 

, where the remainder 

ˆ ( )Sy x

( )y x

( )y x

1ˆ( ) ( )Sy y R +− =x x 1SR +  includes terms of dimension 1S +  and 

higher.  When S = 1, 2, Equation (2.115) degenerates to univariate and bivariate 

approximation. Similarly, trivariate, quadrivariate, and other higher-variate 

approximations can be derived by appropriately selecting the value of S.  At the limit, 

when S = N, Equation (2.115) converges to the exact function .  In other words, the 

proposed approximation generates convergent representation of . 

( )y x

( )y x
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2.7.1.4 Remarks 

The decomposition of a general multivariate function can be viewed as a 

finite sum 

( )y x

1 2 1 2 1 1

1 2 1
1 2 1

1

2

0 12 1
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ˆ ( )

ˆ ( )

ˆ ( )

( ) ( ) ( , ) ( , , ) ( , , )
S s

S
S

S

N N N

i i i i i i i i i i N N
i i i i i

i i i i
y

y

y

y y y x y x x y x x y x x
= = =

< < <
=

=

=

= + + + + + +∑ ∑ ∑
x

x

x

x " "
"
"

" " "
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" , (2.118) 

where y0 is a constant,  is a univariate component function representing an 

independent contribution by input variable v

( )i iy x

i,  is a bivariate component 

function describing cooperative influence of two input variables 

1 2 1 2
( , )i i i iy x x

1 2
and i ix x , 

 is an S-variate component function quantifying cooperative effects of S 

input variables 

1 1
( , , )

Si i i iy x x" "
S

i1
, ,

Six x" , and so on.  By comparing Equations (2.111) and (2.113) with 

Equation (2.118), the univariate and bivariate approximations provide two- and three-

term approximants, respectively, of the finite decomposition.  In general, the S-variate 

approximation in Equation (2.115) yields the S+1-term approximant of the 

decomposition.  The fundamental conjecture underlying this work is that component 

functions arising in the proposed decomposition will exhibit insignificant higher-

dimensional effects.   

It is worth noting that the univariate approximation in Equation (2.111) should not 

be viewed as first- or second-order Taylor series expansions and does not limit the 

nonlinearity of y(x).  According to Equation (2.112), all higher-order univariate terms of 

y(x) are included in the proposed approximation.  In fact, the univariate component 
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function  can be highly nonlinear and, therefore, in general should provide higher-

order representation of a performance function than those by FORM or SORM.  

Furthermore, the approximations contain contributions from all input variables. 

( )i iy x

 

2.7.2 Response Surface Generation 

Consider the univariate terms 1 1 1( ) ( , , , , , , )i i i i i Ny x y c c x c c− +≡ " "  in Equations 

(2.112) and (2.113).  If for ( )j
i ix x= , n function values  

  (2.119) ( ) ( )
1 1 1( ) ( , , , , , , ); 1, 2, ,j j

i i i i i Ny x y c c x c c j n− += " " = "

are given, the function value for arbitrary ix  can be obtained using the Lagrange 

interpolation as 
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"

.       (2.121) 

By using Equation (2.120), many function values of can be arbitrarily generated if 

n function values are given.  The same idea can be applied to the bivariate terms 

 in Equation (2.116).  If for 

( )i iy x
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are given, the function value  for arbitrary point 
1 2 1 2

( , )i i i iy x x
1 2

( , )i ix x  can be obtained 

using the Lagrange interpolation as 

 , (2.123) 1 2

1 2 1 2 1 1 2 2 1 2 1 2

2 11 1

( , ) ( ) ( ) ( , )
n n

j j
i i i i j i j i i i i i

j j

y x x x x y x x
= =

= φ φ∑∑

where shape functions 
1 1
( )j ixφ  and 

2 2
( )j ixφ  are defined in Equation (2.121).  Note that 

there are n and n2 performance function evaluations involved in Equation (2.119) and 

Equation (2.122), respectively.  Therefore, the total cost for univariate approximation 

entails  function evaluations, and for bivariate approximation, 

 function evaluations are required.  More accurate multivariate 

approximations can be developed in a similar way, but with a much higher cost. 

1nN +

2( 1) / 2N N n nN− + 1+

 

2.7.3 Monte Carlo Simulation 

For component reliability analysis, the Monte Carlo estimates PF,1 and PF,2 of  

failure probability, employing univariate and bivariate representations, respectively, are 

 ( )( )
,1 1

1

1 ˆ 0
SN

i
F

iS

P y
N =

⎡ ⎤= <⎣ ⎦∑ x  (2.124) 

and 

 ( )( )
,2 2

1

1 ˆ 0
SN

i
F

iS

P y
N =

⎡ ⎤= <⎣ ⎦∑ x , (2.125) 

where  is the ith realization of X, N( )ix S is the sample size, and [ ]i  is an indicator 

function such that   if  is in the failure set (i.e., when  for univariate 1= ( )ix ( )
1ˆ ( )iy <x 0
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representation and when ( )
2ˆ ( )iy 0<x  for bivariate representation of the performance 

function) and zero otherwise.  

 Since univariate or bivariate representations facilitate lower-dimensional response 

surface approximations, the subsequent Monte Carlo simulation can be conducted for any 

sample size.  However, the accuracy and efficiency of failure probability calculations 

using Equations (2.124) and (2.125) depend on both the decomposition and response 

surface approximation.   

 

2.8 Sensitivity Analysis 

Sensitivity analysis provides a measure of a specific input variable’s importance 

to the reliability results.  The deterministic input variables and the parameters in the 

distributions of random input variables are denoted as input parameters.  The sensitivity 

of the reliability measure with respect to changes in these parameters is important for 

reliability-based design optimization.  This can easily be evaluated as a change of 

reliability for a given change in the design.  In combination with an optimization 

procedure that aims at minimizing total cost, the sensitivities can be also used with 

iterative solution methods. 

2.8.1 Derivative of Reliability Index –One Parameter 

Consider a performance function ( );g θu , where θ is a single parameter, for an 

MPP  on the limit-state surface in the standard Gaussian space, the following 

equations exist  

∗u

∗ = βu α ,                                                       (2.126) 
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( ; )
( ; )

g
g

∗

∗

θ
= −

θ
u
u

∇
α

∇
,                                                (2.127) 

1T =α α ,                                                       (2.128) 

( );g ∗ 0θ =u ,                                                   (2.129) 

where ∇ = { 1, , T
Nu u∂ ∂ ∂ ∂" } .  It follows that β is also a function of θ.  The sensitivity 

of β with respect to changes in θ is measured by the derivative d dβ θ . 

From Equations (2.126) and (2.128) 

T ∗β = uα ,                                                     (2.130) 

which, on taking derivative with respect to θ, given 

T
Td d d

d d d ∗

∗

=

β
= +

θ θ θ u u

uuα
α .                                       (2.131) 

The first term on the right-hand side of Equation (2.131) is zero because 

 and d dθα α are mutually orthogonal and ∗ = βu α .  The orthogonality is verified 

directly by differentiation of Equation (2.128).  Differentiation of Equation (2.129) gives 

( ; ) 0Tdg g dg
d d ∗

∗

=

θ ∂
= +

θ ∂θ θ u u

u u
∇ = .                                 (2.132) 

This, after divided by g∇ on both sides, yields 

1 0
Tg g d

g g d ∗=

∂
+ =

∂θ θ u u

u∇
∇ ∇

,                                  (2.133) 

By comparing Equation (2.133) and (2.131), gives  

1d
d g

gβ ∂
=

θ ∂θ∇
.                                             (2.134) 
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That is the sensitivity of reliability index with respect to parameter θ. 

There are two different cases of application for Equation (2.134). 

(1) Case I: θ is a deterministic input variable 

Hence, θ is a parameter that concerns the definition of the limit state.  The limit-state 

function in standard Gaussian space and original space satisfy 

 ( ) ( ) ( ); ;g g T G ;θ = θ =⎡ ⎤⎣ ⎦u x θx

x

,                              (2.135) 

where  is the given transformation. It then follows that ( )T=u g G∂ ∂θ = ∂ ∂θ .  

(2) Case II: θ is a distribution parameter 

Such a parameter has no influence on the limit state in original space, but has 

influence on the limit state in the standard Gaussian space through the transformation 

.  That means: ( ;T=u x )θ

( ) ( );g Gθ =u x ,                                           (2.136) 

where the right side is independent of . Therefore, the partial derivative of the left 

hand side of Equation (2.136) with respect to θ is zero, written as 

0T gg ∂ ∂
+ ≡

∂θ ∂θ
u

∇ .                                        (2.137) 

By application of (2.127), Equation (2.134) gives 

Td
d ∗=

β ∂
=

θ ∂θ u u

uα .                                     (2.138) 
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2.8.2 Derivative of FORM Approximation to Failure Probability 

The FORM based approximation to the probability of failure is 

( ), 1FP = Φ −β .                                        (2.139) 

The derivative of the failure probability is 

( ), 1FdP d
d d

β
= −φ −β

θ θ
.                                 (2.140) 

Correspondingly, the derivative of the natural logarithm to  is , 1FP

( )
( )

, 1log Fd P d
d d

φ −β β
= −

θ Φ −β θ
.                             (2.141) 

For large values of β the asymptotic formula ( ) ( )/φ −β Φ −β ≅ β  is valid, whereby the 

results of (2.141) can be simplified. 

If  is viewed as a function of an input parameter, the image is in most cases 

strongly curved.  However, if β or  is mapped as a function of the input 

parameter, most often the image is only slightly curved.  Assume that the probability of 

failure is known for a value θ of the input parameter.  We want to determine the 

probability of failure corresponding to the parameter value 

, 1FP

, 1log FP

θ+ ∆θ .  A calculation based 

on 

, 1
, 1 , 1

F
F F

dP
P P

dθ+∆θ θ
≅ +

θ
∆θ ,                         (2.142) 

often will be quite inaccurate except for very small values of ∆θ .  However, a calculation 

based on 
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( )( ), 1F
dP
dθ+∆θ

⎛ β⎛ ⎞⎞= Φ − β+ ∆β ≅ Φ − β+ ∆θ⎜⎜ θ⎝ ⎠⎝ ⎠
⎟⎟             (2.143) 

is often a reasonable approximation even for large values of . Similarly another 

reasonable approximation is 

∆θ

, 1
, 1 , 1

log
exp log F

F F

d P
P P

d
θ

θ+∆θ θ

⎧ ⎫⎪ ⎪≅ + ∆θ⎨ ⎬θ⎪ ⎪⎩ ⎭
.         (2.144) 

 

2.9 Reliability-based Design Optimization 

2.9.1 Introduction 

Stochastic optimization is a mathematical framework for solving general 

optimization problems in the presence of uncertainty, typically manifested by the 

probabilistic description of objective and constraint functions.  A special case of 

stochastic optimization, frequently encountered in structural design, is referred to as 

reliability–based design optimization (RBDO).  According to Royset et al. (2001), there 

are three types of formulation for solving an RBDO problem: 

Type I: Minimize the cost of the design, subject to reliability and structural 

constraints; 

Type II: Maximize the reliability of the design, subject to cost and structural 

constraints; and 

Type III: Minimize the initial cost of the design plus the expected cost of failure, 

subject to reliability and structural constraints. 
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Of these three types, the first formulation is widely studied, typically involving a 

time-invariant reliability analysis.  The basic mathematical model of Type I RBDO can 

be written as 

( )
0min   ( )

subject to ( ) ; 0 ;   i 1, ,
K

i i i

l u

c

c P g R
∈ ⊆

≡ ≥ ≤ =⎡ ⎤⎣ ⎦
≤ ≤

d
d

d X d

d d d

"
D R

cn

∈

,                 (2.145) 

where  is a K-dimensional vector of design variables with a 

nonempty closed set 

{ }1, , T
kd d=d "

K⊆ R ;  is an N-dimensional random 

vector with mean and joint probability density function defined on a probability space 

; f is the objective function that depends on d; 

{ }1, , T N
NX X=X " R∈

)( , , PΩ F ( ); , 1, ,i cg i =X d " n

c

 is the ith 

performance function that depends on d; and 0 1, 1, ,iR i n≤ ≤ = "  are target probabilities.  

The design vector d can be deterministic parameters of objective and constraint functions 

and/or distribution parameters of X (e.g., the mean).  The lower and upper bounds of d 

are denoted by , respectively.  According to Equation (2.145), the objective and 

constraint functions are both deterministic; however, the evaluation of constraints 

requires a reliability analysis. 

 and ld ud

 

2.9.2 FORM-based Optimization Methods 

Traditionally, RBDO formulation is based on the FORM, due to its simplicity and 

computational efficiency.  The constraint of Equation (2.145) can then be expressed by 

( ) ( ) ( ); 0 0  1, ,
ii g tP g F i n≤ = ≤ Φ −β =⎡ ⎤⎣ ⎦X d " c ,                (2.146) 
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where βt is the target reliability index and the cumulative distribution function ( )0
igF  is 

described as 

( ) ( )
( ); 0

0  
i

i

1, ,g cg
F f d i

≤
= ∫ ∫ XX d

x x" n= " ,                   (2.147) 

and  is the joint probability density function (JPDF) of X.   ( )fX x

2.9.2.1 Double-Loop Approach 

The classical double-loop RBDO method employs two nested optimization loops: 

the design optimization loop (outer) and the reliability assessment loop (inner).  The inner 

loop is needed to evaluate each probabilistic constraint in Equation (2.145), which 

together with the outer loop make the double-loop RBDO computationally very 

expensive.  

The probabilistic constraint in Equation (2.145) can be further expressed through 

inverse transformations in two alternative ways: 

( )( )( )1 0
ii gF−

tβ = −Φ ≥ β                                (2.148) 

( )( )1 0
i iP g tg F −= Φ −β ≥                                 (2.149) 

where βi and 
iPg  are called the safety index and the probabilistic performance measure 

for the ith probabilistic constraint, respectively.  If Equation (2.148) is employed to 

describe the probabilistic constraint in equation (2.145), it is called reliability index 

approach (RIA).  The reliability index β is the minimum distance of a point u on the limit 

state  from the origin of the standard normal space.  Therefore, it can be 

calculated from the following reliability minimization problem 

( ) 0g =U u
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     min

. .  ( ) 0s t g

β =

=
u

U

u

u
 .                                             (2.150) 

Similarly, Equation (2.149) can replace the probabilistic constrain with the performance 

measure, which is referred to as the performance measure approach (PMA).  In PMA, the 

performance measure is calculated from the following reliability minimization problem 

( )      min

. . 
iP

t

g g

s t

=

= β

Uu
u

u
.                                       (2.151) 

Methods to solve (2.150) are discussed in section 2.4.2.  Methods to solve  (2.151) were 

summarized by Youn, et al.(2003), which included the variations of mean-value methods. 

 

2.9.2.2 Single-Loop Approach 

An equivalent formulation of the general RBDO problem (2.145) can be stated as 

( )

( )
0min  

subject to  ; 0, 1, ,
                 

K

R
i

l u

c

g i
∈ ⊆

≥ =

≤ ≤

d
d

X d
d d d

"
R

cn ,                               (2.152) 

where gR is the R-percentile of the constraint ( );g X d .  It is defined as  

( ); RP g g R⎡ ≥ =⎣ X d ⎤⎦ ,                                      (2.153) 

where R is the target reliability for the constraint.  If , .  

Therefore,  provides an equivalent deterministic expression of the probabilistic 

constraints in Equation (2.145).  The R-percentile g

0Rg ≥ ( ); 0P g R≥ ≥⎡ ⎤⎣ ⎦X d

0Rg ≥

R is evaluated using the PMA method 
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(Liang, et al., 2004) of Equation (2.151).  After the MPP is calculated, the R-percentile is 

given by 

( );R
MPPg g= X d .                                          (2.154) 

Thus, the optimization problem of  (2.152) becomes  

( )

( )
0min  

subject to  g ; 0, 1, ,
                 

K

i MPP

l u

c

i
∈ ⊆

≥ =

≤ ≤

d
d

X d
d d d

"
R

cn

i i

,                      (2.155) 

where  and 
iX MPP MPP= −X Uµ σ ,

iMPP MPPX U  are the MPP for the ith constraint in x and u 

spaces, respectively and  is the vector of standard deviations. σ

Using the PMA approach, an inner loop of the double-loop method solves the 

optimization problem described by Equation (2.151).  At the optimal point, the following 

Karush-Kuhn-Tacker (KKT) optimality condition is satisfied 

( ) ( ) 0Ug H+ λu u∇ ∇ = ,                                  (2.156) 

where ( )H = −u u β  is an equality constraint and λ is the corresponding Lagrange 

multiplier.  The derivation gives 

 t= −βu α ,                                                  (2.157) 

where ( ) ( ); / ;U Ug g= X d Xα ∇ ∇ d  is the constrain normalized gradient in u space. The 

transformation of x to u space yields the following relationships 

t= − βXX µ σ α ,                                            (2.158) 
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where ( ) ( ); / ;X Xg g= X d Xα σ∇ σ∇ d .  Using (2.158), the RBDO formulation of 

Equation (2.155) can be transformed to the following single-loop, equivalent 

deterministic optimization problem 

( )

( )
0min  

subject to  ; 0, 1, ,

K

i i

c

g i
∈ ⊆

≥ =
d

d

X d "
R

cn
,                         (2.159) 

( ) ( )where   ,  ; / ; , 
ii t i i i i lg g= − β = ≤ ≤

X XX uX X d X d d d dµ σ α α σ∇ σ∇ , and 
it

β is the 

target reliability index for the ith constraint, iα  is the normalized gradient of the ith 

constraint.  The single loop method does not search for the MPP of each constraint at 

each iteration.   Instead, the MPP of the active constraints are correctly identified at the 

optimum.  This dramatically improves the efficiency of the proposed single loop method 

without compromising accuracy. 

 

2.9.3 Sequential Methods for RBDO 

To avoid a nested optimization problem, sequential RBDO methods have been 

developed, which decouple the upper level design optimization from the reliability 

analysis (Agarwal, 2004).  The design optimization and the search of the MPPs are 

performed separately and the procedure is repeated until a desired convergence is 

achieved.  The idea is to find a consistent reliable design at lower computational cost as 

compared with the nested approach (double-loop).  A consistent reliable design is a 

feasible design that satisfies all the reliability constraints.  The reliability analysis is 

employed to check if a given design meets the desired reliability level.  In most 
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sequential techniques of RBDO, a design obtained by performing a deterministic 

optimization is updated based on the information obtained from the reliability analysis, 

and the updated design is used as a starting point for the next cycle. 

Chen and Du (2002) proposed a sequential optimization and reliability assessment 

methodology (SORA).  In SORA, boundaries of the violated constraints are shifted into 

the feasible direction based on the reliability information obtained by previous iteration.  

Both RIA and PMA can be used for reliability assessment if FORM is deserved 

adequately.  The PMA approach was reported to be computationally more efficient than 

RIA approach.  In SORA, a first order reliability analysis is performed to obtain the MPP 

for each failure driven constraint.  Therefore, a consistent reliable design provides an 

approximate solution.  However, a true local optimum cannot be guaranteed, because the 

MPP for active constraints are obtained from the previous design point.  Consequently, 

an MPP update has been suggested, but it may lead to spurious optimal design. 

  

2.9.4 Simulation-based Optimization Methods 

In RBDO, a particular source of difficulty is constructing approximating 

expressions for the failure probability that can be used in conjunction with optimization 

algorithms.  Two approaches for such approximations are described as follows. 

2.9.4.1 Sample Average Approximation 

A sample average approximation method is constructed by replacing the failure 

probabilities in the original RBDO problem with Monte Carlo sampling estimates.  The 

results associated with such approximations give asymptotic properties of minimizes of 
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sample average approximation problems as the number of samples goes to infinity, and 

give error estimates for finite sample sizes.   

Royset and Polak (2004) described the RBDO problem with component failure 

probabilities as 

 

( ) ( ) ( )

( )
( )

0
1

min  

ˆsubject to  ,  1, ,

                 0,   1, ,
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k k
k

k k
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c c p

p p k K

f j J

⊆ =

+

≤ =

≤ =

∑
x

x x x

x

x

"

"

R

,                                  (2.160) 

where is the jth deterministic continuously differentiable, constraint function; 

 is the continuously differentiable cost function associated with the 

failure of the kth component; 

( )jf x

( ) , 1,kc k =x "K

ˆ kp is the pre-defined bound for the kth component failure 

probability and  is the initial cost function. The difficulty associated with solving 

(2.160) is that the failure probabilities cannot be computed exactly and hence has to be 

approximated.  In addition, expressions, if they exist, are difficult to obtain for the 

gradients of the failure probabilities and their approximations.  Due to this reason, a 

direct application of the standard optimization algorithm is impossible. 

( )0c x

Royset and Polak (2004) gave approximations of the integrals for probability of 

failure and its gradient by using sampling techniques.  To improve efficiency, they prefer 

importance sampling rather than original direct Monte Carlo simulation.  Through these 

estimates, combined with the Polak-He algorithm (2004), a new algorithm was proposed 

and proved to converge with a sample size that tends to infinity. 
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2.9.4.2 Response Surface Approximation 

Simulation-based methods are easy to implement into a reliability analysis.  

However, these methods also produce noisy responses that make them difficult to use in 

gradient-based optimization algorithms.  Response surface approximations can help solve 

two problems of simulation-based methods: simulation cost and the noise from random 

sampling.  To solve RBDO of composite laminates in cryogenic environments, Qu and 

Haftka (2001, 2003) proposed a method based on response surface approximations.  Two 

types of response surfaces need to be created.  The first type is analysis response surface 

(ARS), which is fitted to the performance response in terms of both design variables and 

random variables.  When ARS is used, the probability of failure at each design point can 

be calculated efficiently.  The second type is design response surface (DRS), which is 

fitted to probability of failure as a function of design variables.  The DRS is created to 

filter out noise generated by simulation-based methods and is used to calculate the 

reliability constraint in the design optimization procedure.      

 

2.9.5 Others 

Xu and Rahman (2004) recently proposed new decomposition methods to solve 

RBDO problems.  The application involves lower-dimensional approximations of general 

multi-variate functions, response surface approximations, and Monte Carlo simulation.  

Since the probability of failure is estimated from the mean point based decomposition 

approximation of failure surface, there is no need for an inner optimization loop of the 

reliability assessment.  The new method does not depend on FORM/SORM to conduct 
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reliability analysis, and it requires only a small number of function evaluations.  

Numerical examples show the proposed method is both accurate and efficient.  The cost 

for function evaluations in the proposed method can be predetermined, while other 

optimization methods cannot predict the cost for optimization procedure. 

Recently, Zou and Mahadevan (2006) proposed a new decoupling approach, for 

decoupling the optimization and reliability analysis iterations in traditional nested 

formulations.  The reliability constraints are approximated by first-order Taylor series 

expansion based on reliability analysis results, so that the outer loop only performs 

deterministic optimization.  The advantage of this method is that any reliability methods 

can be employed in inner loop for reliability analysis.  The computational efficiency 

depends on the reliability method used and accuracy of the approximation for reliability 

constraints.   

 

2.10 Summary of Review and Future Research Needs 

2.10.1 Conclusions from Existing Research 

Accuracy and efficiency are the two major concerns in existing structural 

reliability and probabilistic design research.  In practical applications, the number of 

design/random variables is large, the limit state/constraint function could be highly 

nonlinear, and local minimums in optimal design could exist, in addition to other possible 

complications.  The following provides a summary of review of existing methods for 

both reliability analysis and reliability-based design optimization.    
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Reliability Analysis 

(1) Mean-Value methods are desirable for computational efficiency and usually used to 

predict the CDF of the response.  Since original MV methods are first/second order 

Taylor expansions of the performance function at the mean point, they can only solve 

linear or slightly nonlinear problems.  Although AMV compensates for the expansion 

truncation error by using a correction term, the difference between the approximate 

MPP and exact MPP can be enormous.  Because AMV+ uses Taylor expansion based 

on an exact MPP, reliability estimation can be much improved.  However, since 

AMV+ is a second order estimation, it cannot produce acceptable solutions in highly 

nonlinear problems. 

(2) Classical FORM/SORM methods are widely used in reliability calculations.  The 

advantage of FORM is computational efficiency and the information provided by 

MPP.  For most reliability problems, SORM can improve FORM by providing 

curvature information around the MPP, which increases the computational effort 

needed to calculate the second derivatives of performance function with respect to 

random variables.  For highly nonlinear problems, the linear/quadratic approximation 

in FORM/SORM can cause errors in the estimation of probability.  For example, if 

the MPP is an inflection point, or if the failure surface around the MPP is very flat, 

then FORM/SORM can lead to a very large error in probability calculation.  HORM 

was proposed to improve point-fitted SORM and approximates the highly nonlinear 

surface by using so-called two point adaptive nonlinear approximation.  This method 

can solve simple, highly nonlinear problems.  However, for practical applications, 
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when the number of random variables is large and response calculation is time 

consuming, the computational efficiency of HORM is low, and may not be useful for 

solving industrial-scale structural reliability problems.  

(3) Simulation methods are applied when no feasible analytical solution is possible, or 

when some approximate methods need to be verified.  Direct Monte Carlo simulation 

generally requires a large number of simulations to calculate small probability, and is 

impractical when each simulation involves expensive finite-element, boundary-

element, or mesh-free calculations.  As a result, researchers have developed or 

examined faster simulation methods (see section 2.5).  The most difficulty of these 

sampling methods is, they need to determine the most probable failure region, or 

chose an appropriate PDF in advance, depending on the failure region.  Hence, 

simulation methods are useful when alternative methods are inapplicable or 

inaccurate, and have been traditionally employed as a benchmark for evaluating 

approximate methods. 

(4) For most practical applications, the performance/response is usually implicit.  Such a 

deterministic prediction can be very time consuming (e.g., large-scale finite element 

analysis), and prevents the implementation of simulation methods.  The response 

surface method provides an approximation of performance/response by using fitted 

polynomials.  Then, based on explicit functions, a broad range of analytical 

methods/simulation methods can be used efficiently.  Since most response surface 

methods are second order, they may not be adequate for highly nonlinear problems; 

the model’s accuracy cannot be adequately assessed and controlled outside selected 
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data regions.  The required number of original model evaluations increasing 

dramatically for those response surface methods with full cross terms in the case of a 

large number of random variables. 

(5) The major advantage of mean-point-based decomposition methods over 

FORM/SORM is that higher order approximations of a performance function can be 

achieved without calculating the MPP or gradients.  Thus, these methods can solve 

highly nonlinear reliability problems more accurately and/or more efficiently.  

However, for a certain class of reliability problems these methods may require 

computationally demanding higher-variate (bivariate, trivariate, etc.) decomposition 

to adequately represent performance function, which will add computational effort 

significantly.   

 

Reliability-based Design Optimization 

(6) Solving RBDO with the double-loop approach is expensive because of the inherent 

computational expense required for a reliability analysis in the inner loop.  For a 

large-scale multidisciplinary system with a large number of random/design variables 

and failure modes, this method is not practical due to high computational costs.  

Although the decoupled method (e.g. sequential optimization reliability assessment) 

and the single-loop approach with the KKT condition improve the computational 

efficiency, these methods may not yield required accuracy and convergence.  If the 

reliability problem is highly nonlinear or multiple MPPs exist, then FORM-based 

RBDO methods may obtain an undesirable probabilistic optimal design.  
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(7) Simulation-based RBDO approaches yield better accuracy than FORM-based RBDO 

approaches.  However, the huge computational cost of sampling only makes them 

applicable to simple problems.  Additionally, the optimization algorithm associated 

with the outer loop may face difficulty in searching the optimum, due to the sampling 

errors of derivatives of probabilistic constraints.  Even though response surface 

approximation of the derivatives may overcome some of these difficulties generated 

from sampling, another source of approximation is involved. 

(8) The existing mean-point-based decomposition methods introduced recently in RBDO 

can improve both efficiency and accuracy for highly nonlinear problems.  The cost of 

function evaluations in the proposed method can be predetermined, while most 

existing optimization methods cannot predict the cost of the optimization procedure 

apriori.  Based on the same comment associated with the reliability analysis for the 

mean-point-based decomposition method, a higher-variate approximation, if required, 

may increase the computational costs of RBDO significantly.     

 

2.10.2 Need for Fundamental Research 

Based on the review described in the preceding sections, the following 

fundamental research should be pursued: 

(1) The decomposition methods for reliability analysis depend on the selected reference 

or expansion point.  It is elementary to show that an improper or careless selection of 

the reference point can spoil the approximation.  Past work indicates that the mean 

point of random input is a good candidate for defining the reference point.  However, 
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for certain class of reliability problems, existing mean-point-based decomposition 

methods may require computationally demanding bivariate or trivariate 

decompositions to adequately represent performance functions.  Hence, developing 

univariate methods, capable of producing computationally efficient, yet sufficiently 

adequate performance functions, is a major motivation of the current work.  The 

present work is motivated by the argument that using MPP as the reference point may 

provide an improved function approximation, however, with the additional expense of 

identifying the MPP. 

(2) The mean point- or MPP-based decomposition methods involve further layers of 

approximations, due to both response-surface generation of univariate or bivariate 

component functions and Monte Carlo simulation.  However, the MPP-based 

univariate decomposition, if appropriately cast in the rotated Gaussian space, permits 

an efficient evaluation of the failure probability by closed-form solutions.  In other 

words, it is possible to perform a general failure probability analysis, which 

represents a multi-dimensional integration over an arbitrary region, by multiple one-

dimensional integrations.  Therefore, developing closed-form solutions of reliability 

without relying on response surface generation or Monte Carlo simulation is 

proposed. 

(3) The existence of multiple MPPs in reliability analysis can result in large errors by 

currently available methods.  Even if all MPPs can be identified, the high nonlinearity 

around some or all MPPs may lead to inadequate accuracy or unacceptable efficiency 

by using existing multi-point FORM/SORM.  Therefore, developing a univariate 
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decomposition method that can handle multiple MPPs and yield superior accuracy or 

computational efficiency than existing methods is highly desirable.  The proposed 

research will extend the MPP-based univariate method for solving multiple MPP 

problems. 

(4) A major by-product of formulating closed-form solutions for determining failure 

probability by MPP-based univariate decomposition method is the likelihood of 

developing analytical sensitivities of reliability with respect to design variables.  Such 

sensitivities are useful for subsequent reliability-based design optimization and 

should be developed. 

(5) The ultimate goal of a reliability analysis is design optimization of mechanical and 

structural systems in the presence of uncertainties.  If the results of both reliability 

and sensitivity are accurate and/or computationally efficient, the associated 

reliability-based design optimization will also be effective.  Therefore, the final goal 

of the proposed research is to develop a new RBDO methodology employing the 

MPP-based univariate decomposition method. 
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Figure 2.1 MPP at the 2D standard normal space 
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CHAPTER 3 

MPP-BASED UNIVARIATE METHOD WITH SIMULATION 

3.1  Multivariate Function Decomposition at MPP 

Consider a continuous, differentiable, real-valued performance function g(x) that 

depends on .   If  is the standard Gaussian 

space, let 

1{ , , }T
Nx x= ∈x N N∈1{ , , }T

Nu u=u

{ }* * *
1 , ,

T

Nu u=u  denote the MPP or beta point, which is the closest point on 

the limit-state surface to the origin.  The MPP has a distance βHL, which is commonly 

referred to as the Hasofer-Lind reliability index (Madsen et al., 1986), is determined by a 

standard nonlinear constrained optimization.  Construct an orthogonal matrix N N×∈R  

whose Nth column is * *
HL≡ βuα , i.e., *

1
⎡ ⎤= ⎣ ⎦R R α , where  satisfies 

.  The matrix R can be obtained, for example, by Gram-Schmidt 

orthogonalization.  For a orthogonal transformation 

1
1

N N× −∈R

*
1

T × −= ∈Rα 0 1 1N

=u Rv , let  

represent the rotated Gaussian space with the associated MPP 

1{ , , }T N
Nv v= ∈v

{ } {* * * *
1 1, , , 0, ,0,

T T
N N HLv v v−= =v }β .  The transformed limit states ( ) 0h =u  and 

 are therefore the maps of the original limit state  in the standard 

Gaussian space (u space) and the rotated Gaussian space (v space), respectively.  Figure 

3.1 depicts FORM and SORM approximations of a limit-state surface at MPP for N = 2. 

( ) 0y =v ( ) 0g =x

Suppose that y(v) has a convergent Taylor series expansion at MPP 

{ }* * *
1 , ,

T

Nv v=v and can be expressed by   
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 ( ) ( )( )* *
2

1 1

1( )
!

jN j

i ij
j i i

yy y v v
j v

∞

= =

∂
= + − +

∂∑ ∑v v v R*   (3.1) 

or 

 
( ) ( )( )

( )( ) ( )
1 2

1 2

1 1 2 21 2
1 2 1 2 1 2

* * *

1 1

* * *
3

, 0 1 2

1( )
!

1
! !

jN j

i ij
j i i

j j j j

i i i ij j
j j i i i i

yy y v v
j v

y v v v v
j j v v

∞

= =

+∞

> <

∂
= + −

∂

∂
+ −

∂ ∂

∑ ∑

∑ ∑

v v v

v R− +

*

, (3.2) 

where the remainder  denotes all terms with dimension two and higher and  the 

remainder  denotes all terms with dimension three and higher. 

2R

3R

3.1.1 Univariate Approximation 

 Consider a univariate approximation of , denoted by ( )y v

 , (3.3) * * * *
1 1 1 1 1 1

1

ˆ ˆ( ) ( , , ) ( , , , , , , ) ( 1) ( )
N

N i i i N
i

y y v v y v v v v v N y− +
=

≡ = − −∑v v

where each term in the summation is a function of only one variable and can be 

subsequently expanded in a Taylor series at *=v v , yielding 

 ( )* *
1

1 1

1ˆ ( ) ( ) ( )
!

jN
j

i ij
j i i

yy y v v
j x

∞

= =

∂
= + −

∂∑ ∑v v v *

2

. (3.4) 

Comparison of Equations (3.1) and (3.4) indicates that the univariate approximation leads 

to the residual error , which includes contributions from terms of 

dimension two and higher.  For sufficiently smooth y(v) with convergent Taylor series, 

the coefficients associated with higher-dimensional terms are usually much smaller than 

that with one-dimensional terms.  As such, higher-dimensional terms contribute less to 

the function, and therefore, can be neglected.  Nevertheless, Equation (3.4) includes all 

1ˆ( ) ( )y y− =v v R
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higher-order univariate terms, as compared with FORM and SORM, which only retain 

linear and quadratic terms, respectively.  Hence,  yields more accurate 

representation of  than FORM/SORM.  Furthermore, Equation (3.4) represents 

exactly the same function as  when 

1ˆ ( )y v

( )y v

( )y v ( ) ( )i iy y= v∑v , i.e., when y(v) can be 

additively decomposed into functions yi(vi) of single variables.  

 

3.1.2  Bivariate Approximation 

 In a similar manner, consider a bivariate approximation 

 
( )

( ) ( )

1 1 1 2 2 2

1 2

* * * * * *
2 1 1 1 1 1

* * * *
1 1 1

1

ˆ ( ) , , , , , , , , , ,

( 1)( 2)( 2) , , , , , ,
2

i i i i i i N
i i

N

i i i N
i

y y v v v v v v v v

N NN y v v v v v y

− + − +
<

− +
=

=

− −
− − +

∑

∑

v

v*
  (3.5) 

of y(v), where each term on the right hand side is a function of at most two variables and 

can be expanded in a Taylor series at *=v v , yielding 

 ( ) ( ) ( )( ) (
1 2

1 2

1 1 2 21 2
1 2 1 2 1 2

* * * * *
2

1 1 , 0 1 2

1 1ˆ ( ) ( )
! ! !

j jjN

)*j jj
i i i i i ij jj

j i j j i ii i i

y yy y v v v v v v
j v j j v v

+∞ ∞

= = > <

∂ ∂
= + − + − −

∂ ∂ ∂∑ ∑ ∑ ∑v v v v . 

 (3.6) 

Again, the comparison of Equations (3.2) and (3.6) indicates that the bivariate 

approximation leads to the residual error 2ˆ( ) ( )y y 3− =v v R , in which the remainder  

includes terms of dimension three and higher.  The bivariate approximation includes all 

terms with no more than two variables, thus yielding higher accuracy than the univariate 

approximation.  Furthermore, Equation (3.6) exactly represents , 

3R

( ) ( , )ij i jy y v=∑∑v v
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i.e., when y(v) can be additively decomposed into functions yij(vi, vj) of at most two 

variables.   

 

3.1.3  Generalized S-variate Approximation 

 The procedure for univariate and bivariate approximations described in the 

preceding can be generalized to an S-variate approximation for any integer 1 S N≤ ≤ .  

The generalized S-variate approximation of y(v) is 

 
1 1 1

1

* * * * *
1 1 1 1 1

0

1
ˆ ( ) ( 1) ( , , , , , , , , , , )

S i S i S i
S i

S
i

S k k k k
i k k

N S i *
k k Ny y v v v v v v v v

i − − −

−

− + − +
= < <

− + −⎛ ⎞
≡ − ⎜ ⎟

⎝ ⎠
∑ ∑v

S≤

R S

.

(3.7) 

If , a 

multivariate function decomposition theorem, developed by the first author’s group, leads 

to (Xu and Rahman, 2004) 

1 1 1

* * * * * *
1 1 1 1 1( , , , , , , , , , , );   0

R R RR k k k k k k Ny y v v v v v v v v R− + − +≡ ≤

 
0

;  0
R

R k
k

N k
y t

R k=

−⎛ ⎞
= ≤ ≤⎜ ⎟−⎝ ⎠
∑   , (3.8) 

where 

 

( )( )

( )( ) ( )

( )( ) ( )

1 1

1 11
1 1 1

1 2 1 2

1 1 2 21 2
1 2 1 2 1 2

1 1

1 11
1 1 1

*
0

* *
1

11

* * *
2

, 1 2

* * *

, , 1

( )
1

!

1
! !

1
! !

j

j j

jjS S
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S S S

jN

i ij
j i i

j j

i i i ij j
j j i i i i

j j

S ijj
j j i iS i i

t y
yt v v

j v

yt v v v v
j j v v

yt v
j j v v

=

+

<

+ +

< <

=

∂
= −

∂

∂
= − −

∂ ∂

∂
= −

∂ ∂

∑ ∑

∑ ∑

∑ ∑

v

v

v

v i i iv v v−

. (3.9) 
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Using Equations (3.8) and (3.9), it can be shown that  in Equation (3.7) consists of 

all terms of the Taylor series of  that have less than or equal to  variables (Xu and 

Rahman, 2004).  The expanded form of Equation (3.7), when compared with the Taylor 

expansion of , indicates that the residual error in the S-variate approximation is 

, where the remainder 

ˆ ( )Sy v

( )y v S

( )y v

1ˆ( ) ( )Sy y +− =v v RS 1S+R  includes terms of dimension 1S +  and 

higher.  When S = 1, Equation (3.7) degenerates to the univariate approximation 

(Equation (3.3)).  When S = 2, Equation (3.7) becomes the bivariate approximation 

(Equation (3.5)).  Similarly, trivariate, quadrivariate, and other higher-variate 

approximations can be derived by appropriately selecting the value of S.  In the limit, 

when S = N, Equation (3.7) converges to the exact function .  In other words, the 

decomposition technique generates a convergent sequence of approximations of . 

( )y v

( )y v

 

3.1.4  Remarks  

The decomposition of a general multivariate function can be viewed as a 

finite sum 

( )y v

 

 ,  
1 2 1 2 1 1

1 2 1
1 2 1

1

2

0 12 1
1 , 1 , , 1

ˆ ( )

ˆ ( )

ˆ ( )

( ) ( ) ( , ) ( , , ) ( , , )
S s

S
S

S

N N N

i i i i i i i i i i N N
i i i i i

i i i i
y

y

y

y y y v y v v y v v y v v
= = =

< < <
=

=

=

= + + + + + +∑ ∑ ∑
v

v

v

v

(3.10) 
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where y0 is a constant, is a univariate component function representing independent 

contribution to y(v) by input variable v

( )i iy v

i acting alone,  is a bivariate component 

function describing cooperative influence of two input variables , 

 is an S-variate component function quantifying cooperative effects of S 

input variables , and so on.  By comparing Equations (3.3) and (3.5) with 

Equation (3.10), the univariate and bivariate approximations provide two- and three-term 

approximants, respectively, of the finite decomposition.  In general, the S-variate 

approximation in Equation (3.7) yields the S+1-term approximant of the decomposition.  

The fundamental conjecture underlying this work is that component functions arising in 

the proposed decomposition will exhibit insignificant higher-dimensional effects 

cooperatively.   

1 2 1 2
( , )i i i iy v v

1 2
and i iv v

1 1
( , , )

Si i i iy v v
S

i1
, ,

Siv v

It is worth noting that the univariate approximation in Equation (3.3) should not 

viewed as first- or second-order Taylor series expansions nor does it limit the 

nonlinearity of y(v).  According to Equation (3.4), all higher-order univariate terms of 

y(v) are included in the proposed approximation.  In fact, the univariate component 

function  can be highly nonlinear and therefore should provide in general higher-

order representation of a performance function than those by FORM or SORM.  

Furthermore, the approximations contain contributions from all input variables. 

( )i iy v

Finally, the decomposition presented here depends on the selected reference point.  

It is elementary to show that an improper or careless selection of the reference point can 

spoil the approximation.  The authors’ past work indicates that the mean point of random 
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input is a good candidate for defining the reference point (Xu and Rahman, 2005).  This 

present work is motivated by the argument that using MPP as the reference point may 

provide an improved function approximation, however, with the additional expense of 

identifying the MPP. 

 

3.2  Response Surface Generation 

Consider the univariate component function  

in Equation (3.4).  If for , n function values  

* * *
1 1 1( ) ( , , , , , , )i i i i i Ny v y v v v v v− +≡ *

( )j
i iv v=

  (3.11) ( ) * * ( ) * *
1 1 1( ) ( , , , , , , ); 1, 2, ,j j

i i i i i Ny v y v v v v v j n− += =

are given, the function value for arbitrary  can be obtained using the Lagrange 

interpolation as 

iv

 , (3.12) ( )

1

( ) ( ) ( )
n

j
i i j i i i

j

y v v y v
=

= φ∑

where the shape function  is defined as ( )j ivφ

 
( )

( )

( )

1,

( ) ( )

1,

( )

n
k

i i
k k j

j i n
j k

i i
k k j

v v
v

v v

= ≠

= ≠

−
φ =

−

∏

∏
. (3.13) 

By using Equations (3.13) and (3.14), arbitrarily many values of can be generated 

if n values of that component function are given.  The same procedure is repeated for all 

univariate component functions, i.e., for all 

( )i iy v

( ),  1, ,i iy v i N= .  Therefore, the total cost 
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for the univariate approximation in Equation (3.4), in addition to that required for 

locating MPP, entails a maximum of 1nN +  function evaluations.  

 More accurate bivariate or multivariate approximations (e.g., Equations (3.6) or 

(3.8)) can be developed in a similar way.  However, because of much higher cost of 

multivariate approximations, only the univariate approximation will be examined in this 

paper.   

 

3.3  Monte Carlo Simulation 

For component reliability analysis, the Monte Carlo estimate PF,1 of the failure 

probability employing the proposed univariate approximation is 

 ( )( )
,1 1

1

1 ˆ 0
SN

i
F

iS

P y
N =

⎡ ⎤= <⎣ ⎦∑ vI , (3.14) 

where  is the ith realization of V, N( )iv S is the sample size, and  is an indicator 

function such that  if  is in the failure set (i.e., when ) and zero 

otherwise.   Similar failure probability estimates can be developed using higher-variate 

models if required.  In addition, similar approximations can be employed for system 

reliability analysis (Xu and Rahman, 2005). 

[ ]⋅I�

1=I� ( )iv ( )
1ˆ ( ) 0iy <v

 The decomposition method involving univariate approximation (Equation (3.4)), 

n-point Lagrange interpolation (Equations (3.13) and (3.14)), and Monte Carlo simulation 

(Equation (3.15)) is defined as the MPP-based univariate method in this chapter.  Since 

the univariate method leads to explicit response-surface approximation of a performance 

function, the embedded Monte Carlo simulation can be conducted for any sample size.  
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However, the accuracy and efficiency of the resultant failure-probability calculation 

depend on both the univariate and response surface approximations.  They will be 

evaluated using several numerical examples, as follows. 

 

3.4  Numerical Examples 

 Four numerical examples involving explicit functions from mathematical or solid-

mechanics problems (Examples 1 and 2) and implicit functions from structural or solid-

mechanics problems (Examples 3 and 4), are presented to illustrate the MPP-based 

univariate response-surface method developed.  Whenever possible, comparisons have 

been made with existing mean-point-based univariate response-surface method, 

FORM/SORM, and simulation methods to evaluate the accuracy and computational 

efficiency of the proposed method.  For the MPP-based univariate response-surface 

method, n (= 3, 5, or 7) uniformly distributed points 

* * * * *( 1) 2, ( 3) 2, , , , ( 3) 2, ( 1) 2i i i i iv n v n v v n v n− − − − + − + −  were deployed at vi-

coordinate, leading to  function evaluations in addition to those required for 

locating the MPP. 

( 1)−n N

 When comparing computational efforts by various methods, the number of 

original performance function evaluations is chosen as the primary metric in this paper.  

For the direct Monte Carlo simulation, the number of original function evaluations is the 

same as the sample size.  However, in univariate response-surface methods, they are 

different, because the Monte Carlo simulation (although with same sample size as in 

direct Monte Carlo simulation) embedded in the proposed method is conducted using 
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their response surface approximations.  The difference in CPU times in evaluating an 

original function and its response surface approximation is significant when a calculation 

of the original function involves expensive finite-element analysis, as in Examples 3 and 

4.  However, the difference becomes trivial when analyzing explicit performance 

functions, as in Examples 1 and 2.  Hence, the computational effort expressed in terms of 

function evaluations alone should be carefully interpreted for explicit performance 

functions.  Nevertheless, the number of function evaluations provides an objective 

measure of the computational effort for reliability analysis of realistic problems. 

3.4.1 Example Set I – Mathematical Functions (Example 1) 

 Consider a cubic and a quartic performance functions (Grandhi and Wang, 1999), 

expressed respectively by 

 ( ) (3
1 2 1 2 1 2

0.025 2 33( , ) 2.2257 20
27 140

g X X X X X X= − + − + − )  (3.15) 

and 

 ( ) (4
1 2 1 2 1 2

5 1 33( , ) 20
2 216 140

= + + − − −g X X X X X X ) , (3.16) 

where  are independent, Gaussian random variables, each with 

mean µ = 10 and standard deviation σ = 3.  From an MPP search,  and 

(10,3),  1, 2iX N i =

* {0,2.2257}T=v

* 2.2257HLβ = =v  for the cubic function and  and * {0,2.5}T=v * 2.5HLβ = =v  for the 

quartic function, as shown in Figures 3.2(a) and 3.2(b), respectively.  In addition, Figures 

3.2(a) and 3.2(b) plot exact limit-state surfaces and their various approximations by 

FORM/SORM (Breitung, 1984; Hohenbichler et al., 1987; Cai and Elishakoff, 1994), 
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mean-point-based univariate response-surface method (Xu and Rahman, 2005), and 

proposed MPP-based univariate response-surface method.  For univariate response-

surface methods, a value of n = 5 was selected, resulting 9 function evaluations.   

According to Figures 3.2(a) and 3.2(b), the MPP-based univariate response-surface 

method yields exact limit-state equations, since both performance functions considered 

are univariate functions and at most consist of fourth-order polynomial in the rotated 

Gaussian space.  For the cubic function, the limit-state equation by mean-point based 

univariate method matches the exact equation only at MPP.  However, for the quartic 

function, the mean-point-based limit-state equation is non-negative, leading to a null 

failure set.  FORM and SORM yield grossly inaccurate representation of both limit-state 

equations, due to zero (inflection point of the cubic function) or very small (highly 

nonlinearity of the quartic function) curvatures at MPP. 

           Tables 3.1 and 3.2 show the results of the failure probability calculated by FORM, 

SORM due to Breitung (1984), Hohenbichler (1987), and Cai and Elishakoff (1994), 

mean-point-based univariate response-surface method (Xu and Rahman, 2005), proposed 

MPP-based univariate response-surface method, and direct Monte Carlo simulation using 

106 samples.  The MPP-based univariate response-surface method predicts exact 

probability of failure.  The univariate response-surface method using mean point, which 

yields poor approximations of performance functions [see Figures 3.2(a) and 3.2(b)], 

underpredicts (cubic function) or fails (quartic function) to provide a solution.  Other 

commonly used reliability methods, such as FORM and SORM, underpredict failure 

probability by 31 percent and overpredict failure probability by 117 percent when 
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compared with direct Monte Carlo results.  The SORM results are the same as the FORM 

results, indicating that there is no improvement over FORM for problems involving 

inflection points or high nonlinearity. 

 

3.4.2 Example Set II – Solid Mechanics Problems 

3.4.2.1  Example 2 – Burst Margin of a Rotating Disk 

 Consider an annular disk of inner radius Ri, outer radius Ro, and constant thickness 

 (plane stress), as shown in Figure 3.3.  The disk is subject to an angular velocity 

ω about an axis perpendicular to its plane at the center.  The maximum allowable angular 

velocity ω

ot R

a when tangential stresses through the thickness reach the material ultimate 

strength Su factored by a material utilization factor αm is (Boresi and Schmidt, 2003) 

 ( )
( )

1 2

3 3

3 m u o i
a

o i

S R R
R R

⎡ ⎤α −
⎢ ⎥ω =

ρ −⎢ ⎥⎣ ⎦
, (3.17) 

where ρ is the mass density of the material.  According to an SAE G-11 standard, the 

satisfactory performance of the disk is defined when the burst margin Mb, defined as  

 ( )
( )

1 2

2 3 3

3 m u o ia
b

o i

S R R
M

R R

⎡ ⎤α −ω
⎢ ⎥≡ =

ω ρω −⎢ ⎥⎣ ⎦
, (3.18) 

exceeds a critical threshold of 0.37473 (Penmetsa and Grandhi, 2003).  If random 

variables , 1 mX = α 2 uX S= , 3X = ω , 4X = ρ , 5 oX R= , and 6 iX R= , and have their 

statistical properties defined in Table 3.3, the performance function becomes 

 1 2 3 4 5 6( ) ( , , , , , ) 0.37473.bg M X X X X X X= −X , (3.19) 
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 Table 3.4 presents predicted failure probability of the disk and associated 

computational effort using MPP- and mean-point-based univariate response-surface 

methods, mean-point-based bivariate response-surface method, FORM, Hohenbichler’s 

SORM (Hohenbichler et al., 1987), and direct Monte Carlo simulation (106 samples).  

For univariate and bivariate response-surface methods, a value of n = 7 was selected.  

The results indicate that the proposed MPP-based univariate method and mean-point-

based bivariate method produce the most accurate solution.  The mean-point based 

univariate method significantly overpredicts the failure probability, whereas FORM and 

SORM slightly underpredict the failure probability.  The MPP-based univariate response-

surface method surpasses both the accuracy (although marginally) and efficiency of 

SORM and mean-point-based bivariate response-surface method in solving this reliability 

problem. 

 

3.4.2.2  Example 3 – 10-Bar Truss Structure 

A ten-bar, linear-elastic, truss structure, shown in Figure 3.4, was studied in this 

example to examine the accuracy and efficiency of the proposed reliability method.  The 

Young’s modulus of the material is 107 psi.  Two concentrated forces of 105 lb are 

applied at nodes 2 and 3, as shown in Figure 3.4.  The cross-sectional area , 1, ,10iX i =  

for each bar follows truncated normal distribution clipped at 0ix =  and has mean µ = 2.5 

in2 and standard deviation σ = 0.5 in2.  According to the loading condition, the maximum 

displacement [( ] occurs at node 3, where a permissible displacement is 

limited to 18 in.  Hence, the performance function is  

3 1 10( , , )v X X
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 ( )3 1 10( ) 18 , ,g v X= −X X . (3.20) 

 From the MPP search involving finite-difference gradients, the reliability index is 

* 1.3642HLβ = =v .  Table 3.5 shows the failure probability of the truss, calculated using 

the proposed MPP-based univariate response-surface method, mean-point based 

univariate response-surface method (Xu and Rahman, 2005), FORM, three variants of 

SORM due to Breitung (1984), Hohenbeichler et al. (1987) and Cai and Elishakoff 

(1994), and direct Monte Carlo simulation (106 samples).  For univariate response-

surface methods, a value of n = 7 was selected.  As can be seen from Table 5, both 

versions of the univariate response-surface method predict the failure probability more 

accurately than FORM and all three variants of SORM.  This is because univariate 

methods are able to approximate the performance function more accurately than FORM 

and SORM.  A comparison of the number of function evaluations, also listed in Table 

3.5, indicates that the mean-point-based univariate response-surface method is the most 

efficient method.  The number of function evaluations by the MPP-based univariate 

response-surface method is slightly larger than FORM, but much less than SORM. 

 

3.4.2.3  Example 4 – Fracture Mechanics of Functionally Graded Material 

           The final example involves an edge-cracked plate, presented to illustrate mixed-

mode probabilistic fracture-mechanics analysis using the univariate response-surface 

method.  As shown in Figure 3.5(a), a plate of length L = 16 units, width W = 7 units was 

fixed at the bottom and subjected to a far-field and a shear stress τ∞ applied at the top.  A 

2b1 µ 2b2 domain with 2b1 = 2b2 = 3.5 units, required to calculate the M-integral.  The 
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elastic modulus and Poisson’s ratio were 1 unit and 0.25, respectively. A plane strain 

condition was assumed.  The statistical property of the random 

input { }/ , ,
T

Ica W K∞= τX is defined in Table 3.6. 

Due to the far-field shear stress ∞τ , the plate is subjected to mixed-mode 

deformation involving fracture modes I and II (Anderson, 1995).  The mixed-mode 

stress-intensity factors ( )IK X  and ( )IIK X  were calculated using an interaction integral 

method (Yau et al. 1980).  The plate was analyzed using the finite element method 

(FEM) involving a total of 832 8-noded, regular, quadrilateral elements and 48 6-noded, 

quarter-point (singular), triangular elements at the crack-tip, as shown in Figure 3.5(b).   

The failure criterion is based on a mixed-mode fracture initiation using the 

maximum tangential stress theory (Anderson, 1995), which leads to the limit-state 

equation  

 2 ( ) 3 ( )( ) ( )cos ( )sin ( ) cos
2 2 2Ic I IIg K K KΘ Θ⎡ ⎤= − − Θ⎢ ⎥⎣ ⎦
X XX X X X , (3.21) 

where is a deterministic fracture toughness, typically measured from small-scale 

fracture experiments under mode-I and plane strain conditions, and 

IcK

( )cΘ X  is the 

direction of crack propagation, given by 

 

[ ]

[ ]

2

1

2

1

1 1 8 ( ) ( )
2 tan ,   if ( ) 0

4 ( ) ( )
( )

1 1 8 ( ) ( )
2 tan ,   if ( ) 0

4 ( ) ( )

II I
II

II I

c

II I
II

II I

K K
K

K K

K K
K

K K

−

−

⎧ ⎛ ⎞− +⎪ ⎜ ⎟ >
⎪ ⎜ ⎟
⎪ ⎝ ⎠Θ = ⎨

⎛ ⎞⎪ + +⎜ ⎟⎪ <
⎜ ⎟⎪
⎝ ⎠⎩

X X
X

X X
X

X X
X

X X

. (3.22) 
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Failure probability estimates of [ ( ) 0]FP P g= <X , obtained using the proposed 

MPP-based univariate method, mean-point-based univariate and bivariate methods, 

FORM, Hohenbeichler’s SORM, and direct Monte Carlo simulation, are compared in 

Figure 3.6 and are plotted as a function of [ ]∞τE , where  is the expectation operator.    

For each reliability analysis (i.e., each point in the plot), FORM and SORM require 29 

and 42 function evaluations (finite-element analysis).  Using n = 9, the mean-point-based 

and MPP-based univariate methods require only 25 and 53 ( = 29 + 24) function 

evaluations, respectively, whereas 211 and 50,000 finite-element analyses are needed by 

the mean-point-based bivariate method and Monte Carlo simulation, respectively.  The 

results clearly show that MPP-based univariate method is more accurate than other 

methods, particularly when the failure probability is low.  The computational effort by 

MPP-based univariate method is much lower than that by mean-point-based bivariate or 

simulation methods. 

E

 

3.5  Fatigue Reliability Applications 

The objective of this section is to illustrate the effectiveness of the proposed 

univariate response-surface method in solving a large-scale practical engineering 

problem.  The problem involves mechanical fatigue durability and reliability analyses of 

a lever arm in a wheel loader. 

3.5.1 Problem Definition and Input 

Figure 3.7(a) shows a wheel loader commonly used in the heavy construction 

industry.  A major structural problem entails fatigue life evaluation of lever arms, also 
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depicted in Figure 3.7(a).  The loading and boundary conditions of a single lever arm are 

shown in Figure 3.7(b).  The load FE at pin E can be viewed as an input load due to other 

mechanical components of the wheel loader.  The deterministic constant-amplitude load 

cycles at pin E vary from -800 to 3200 kN and are shown in Figure 3.7(c).  The lever arm 

is made of cast steel with deterministic elastic properties, as follows:  (1) Young’s 

modulus E = 203 GPa, (2) Poisson’s ratio ν = 0.3.  In general, the random input vector X, 

which comprises casting defect characteristics and material properties, include defect 

radius r, ultimate strength Su, fatigue strength coefficient f′σ , fatigue strength exponent b, 

fatigue ductility coefficient f′ε , and fatigue ductility exponent c.  Table 3.7 defines 

statistical properties of X.  The objective is to predict fatigue durability and reliability of 

the lever arm.  A value of n = 3 was selected for the proposed univariate method. 

 

3.5.2  Fatigue Reliability Analysis 

The von Mises strain-life method was employed for fatigue durability analysis 

(Stephens et al., 2001).  According to this method, the Coffin-Manson-Morrow equation 

for determining fatigue crack-initiation life Nf at a point is (Stephens et al., 2001) 

 ( ) (2 2
2

bf m
f f fN

E
)c

N
′σ −σ∆ε ′= + ε , (3.23) 

where  is the equivalent strain range and ∆ε mσ  is the equivalent mean stress, both of 

which depend on strain and stress fields.  Appendix A provides a brief exposition of 

calculating  and , which requires results of linear-elastic finite-element stress ∆ε mσ
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analysis.  Appendix B describes how defect size can be estimated from casting 

simulation. 

Once  and  are calculated, the fatigue life N∆ε mσ f (X), which depends on random 

input X, can be calculated by solving Equation (3.23).  The fatigue failure is defined 

when Nf (X) exceeds a design threshold n0.  Hence, the performance function becomes 

 0( ) ( )fg N n= −X X . (3.24) 

A value of  cycles was employed in this study. 7
0 10n =

 

3.5.3 Results 

3.5.3.1 Without Defects 

Figure 3.8(a) shows a three-dimensional finite-element mesh of the lever arm 

involving 77,154 tetrahedral elements and 17,089 nodes, which was generated using the 

ABAQUS commercial software (ABAQUS, 2002).  Using the FEM-based stress analysis 

and following the procedure described in Appendix A, Figures 3.8(b) and 3.8(c) present 

contours of equivalent alternating strain  ( = half of equivalent strain range = 2∆ε ) and 

equivalent mean stress ( ), respectively, of the lever arm. mσ

 The MPP-based univariate response-surface method was applied to calculate the 

probability of fatigue failure 0( )F fP P N n⎡ ⎤≡ <⎣ ⎦X .  Since no defects are considered 

initially, only four random variables comprising fatigue strength coefficient, fatigue 

strength exponent, fatigue ductility coefficient, and fatigue ductility exponent are 

required.  Figure 3.9 shows the contour plot of the reliability index  of the (1 1 FP−β ≡ Φ − )
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entire lever arm.  Results indicate that the reliability indices are relatively small (i.e., 

failure probabilities are relatively large) in Region A where there are large strains (see 

Figure 3.8(a)) or in Region B where there are large mean stress (see Figure 3.8(b)) and 

are expected.  A further comparative analysis indicates that largest failure probabilities in 

Regions A and B are 0.0127 and 0.00466, respectively.  Therefore, if the lever arm is 

redesigned, a natural tendency is to modify the shape or size of Region A until the failure 

probability is lowered to a target value.   

 

3.5.3.2 With Defects 

The probabilistic analysis described in the preceding can also be employed when 

casting-induced shrinkage defects are considered.  However, any detrimental effect of 

defect size on  and  and two additional random variables, such as defect radius and 

ultimate strength S

∆ε mσ

u, (see Appendix A) must be accounted for in subsequent reliability 

analysis.  Figure 3.10 shows the contour plot of porosity distribution in the lever arm and 

was generated using the MAGMASOFT commercial software (MAGMASOFT, 2002).  

The MAGMASOFT simulation predicts larger porosity in Region B in this particular 

lever arm.  By following the procedure of Appendix B, the mean radius (µr) of equivalent 

spherical defects at three internal (near surface) locations 1, 2, and 3, sketched in Figure 

10, are estimated to be 14.4 mm, 5.5 mm, and 11.5 mm, respectively.  The 10 percent 

coefficient of variation and lognormal distribution of r were defined arbitrarily. 

 Table 3.8 presents predicted failure probabilities at locations 1, 2, and 3, 

calculated with and without considering casting-induced shrinkage porosity.  Results 
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suggest that the presence of defect can alter failure probability by 3 to 4 orders of 

magnitude.  It is interesting to note that the largest failure probability of 0.0782, which 

occurs in Region B due to the presence of defect, has now become larger than the largest 

failure probability of 0.0127 in Region A.  In other words, larger failure probability may 

occur at other seemingly non-critical regions when casting-induced defects are 

considered.  Therefore, mechanical fatigue design processes that do not account for 

casting-induced defects may neither improve design nor provide a truly reliable solution. 
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Table 3.1  Failure probability for cubic performance function 
 
 

 
Method 

Failure  
Probability 

Number of function 
evaluations(a)

MPP-based univariate method 0.01907 29(b)

Mean-point-based univariate  
method (Xu and Rahman, 2005) 

0.01558 9(c)

FORM 0.01302 21 
SORM (Breitung, 1984) 0.01302 204 
SORM (Hohenbichler, 1987) 0.01302 204 
SORM (Cai and Elishakoff, 1994) 0.01302 204 
Direct Monte Carlo simulation 0.01907 1,000,000 

 (a) Total number of times the original performance function is calculated. 

 (b) 21  ( 1) 21 (5 1) 2 29n N+ − × = + − × =

 (c) ( 1  ) 1 (5 1) 2 1 9n N− × + = − × + =

 
 
 
 

Table 3.2  Failure probability for quartic performance function 
 
 

 
Method 

Failure  
Probability 

Number of function 
evaluations(a)

MPP-based univariate method 0.002886 29(b)

Mean-point-based univariate  
method (Xu and Rahman, 2005) 

_(c) _(c)

FORM 0.006209 21 
SORM (Breitung, 1984) 0.006208 212 
SORM (Hohenbichler, 1987) 0.006208 212 
SORM (Cai and Elishakoff, 1994) 0.006206 212 
Direct Monte Carlo simulation 0.002886 1,000,000 

 (a) Total number of times the original performance function is calculated. 

 (b) 21  ( 1) 21 (5 1) 2 29n N+ − × = + − × =

 (c) Fails to provide a solution. 
 
 

 
 



www.manaraa.com

 99

 
 

Table 3.3  Statistical properties of random input for rotating disk 
 
 

Random 
Variable 

 
Mean 

Standard 
Deviation 

Probability 
Distribution 

αm 0.9377 0.0459 Weibull(a)

Su, ksi 220 5 Gaussian 

ω, rpm 24 0.5 Gaussian 

ρ, lb-sec2/in4 0.29/g(b) 0.0058/g(b) Uniform(c)

Ro, in 24 0.5 Gaussian 

Ri, in 8 0.3 Gaussian 

 (a) Scale parameter = 25.508; shape parameter = 0.958 

 (b) g = 385.82 in/sec2

 (c) Uniformly distributed over (0.28,0.3). 
 
 
 

Table 3.4  Failure probability of rotating disk 
 
 

 
Method 

Failure  
Probability 

Number of function 
evaluations(a)

MPP-based univariate method 0.00101 167(b)

Mean-point-based univariate  
method (Xu and Rahman, 2005) 

0.00159 37(c)

Mean-point-based bivariate  
method (Xu and Rahman, 2005) 

0.00103 577(d)

FORM 0.000894 131 
SORM (Hohenbichler, 1987) 0.000970 378 
Direct Monte Carlo simulation 0.00104 1,000,000 

 (a) Total number of times the original performance function is calculated. 

 (b) 131  ( 1) 131 (7 1) 6 167n N+ − × = + − × =

 (c) ( 1  ) 1 (7 1) 6 1 37n N− × + = − × + =

             (d)  2 2( 1) ( 1) / 2 ( 1) 1 6 (6 1) (7 1) / 2 (7 1) 6 1 577N N n n N× − × − + − × + = × − × − + − × + =
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Table 3.5  Failure probability of ten-bar truss structure 
 
 

 
Method 

Failure  
Probability 

Number of function 
evaluations(a)

MPP-based univariate method 0.1465 187(b)

Mean-point-based univariate  
method (Xu and Rahman, 2005) 

0.1357 61(c)

FORM 0.0862 127 
SORM (Breitung, 1984) 0.1286 506 
SORM (Hohenbichler, 1987) 0.1524 506 
SORM (Cai and Elishakoff, 1994) 0.1467 506 
Direct Monte Carlo simulation 0.1394 1,000,000 

 (a) Total number of times the original performance functions is calculated. 

 (b) 127  ( 1) 127 (7 1) 10 187n N+ − × = + − × =

 (c) ( 1  ) 1 (7 1) 10 1 61n N− × + = − × + =

 

 

Table 3.6  Statistical properties of random input for  
an edge-cracked plate 

 
 

Random 
Variable 

 
Mean 

Standard 
Deviation 

 
Probability Distribution 

a/W 0.5 0.2309 Uniform(a)

τ∞ Variable (b) 0.1 Gaussian 

KIc 200 0.1 Lognormal 

(a) Uniformly distributed over (0.3, 0.7). 

(b) Varies from 2.6 to 3.1.   
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Table 3.7  Statistical properties of random input for lever arm
 
 

Random 
Variable(a)

 
Mean 

Coefficient 
of Variation 

 
Probability Distribution 

f′σ , MPa 1,332 0.1 Lognormal 

b -0.1085 0.1 Lognormal 

f′ε  0.375 0.1 Lognormal 

c -0.6354 0.1 Lognormal 

Su, MPa 847 0.05 Lognormal 

r, mm Variable(b) 0.1 Lognormal 

 (a) Random variables Su and r are active only when casting defects are considered. 

 (b) Varies as follows: 14.4, 5.5, and 11.5 mm at locations 1, 2, and 3, respectively (see Figure 10). 
 
 
 
 
 
 

Table 3.8  Probability of fatigue failure of lever arm at  
locations 1, 2, and 3 

 
 

Probability of Fatigue  
Failure 

 
 
 

Location 

 
 

Mean Defect 
Radius, mm 

Without  
Defect(a)

With  
Defect(b)

1 14.4 3.396×10-6 2.829×10-2

2 5.5 2.294×10-5 7.818×10-2

3 11.5 3.433×10-6 2.779×10-2

 (a) Random input vector:  4{ , , , }T
f fb c′ ′= σ ε ∈X

 (a) Random input vector:  6{ , , , , , }T
f f ub c S r′ ′= σ ε ∈X
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Figure 3.1  Performance function approximations by various methods 
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Figure 3.2  Approximate performance functions by various methods; (a) cubic 
function; (b) quartic function 
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Figure 3.3  Rotating annular disk subject to angular velocity 
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Figure 3.4  A ten-bar truss structure 
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Figure 3.5  An edge-cracked plate subject to mixed-mode deformation;  
(a) geometry and loads; (b) finite-element discretization 
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Figure 3.6  Probability of fracture initiation in an edge-cracked plate 
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Figure 3.7  A wheel loader under cyclic loads; (a) two lever arms; (b) loading and 
boundary conditions of a lever arm; (c) constant-amplitude cyclic loads at pin E 
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 (a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (b)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.8  Finite element analysis of a lever arm; (a) mesh (77,154 elements; 17,089 
nodes);(b) equivalent alternating strain (∆ε/2) contour; (c) equivalent mean stress (σm) 

contour 

(c)

(MPa) 
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Figure 3.9  Fatigue life-based reliability index contour of lever arm 
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Figure 3.10  Porosity field of lever arm from casting simulation 
 



www.manaraa.com

  112

CHAPTER 4 

MPP-BASED UNIVARIATE METHOD WITH NUMERICAL INTEGRATION 

4.1  Univariate Decomposition at MPP 

 The general case of multivariate function decomposition at MPP is described in 

Chapter 3.  In this Chapter, a univariate decomposition at MPP is discussed further.  

Consider a univariate approximation of , denoted by ( )y v

 , (4.1) * * * *
1 1 1 1 1 1

1

ˆ ˆ( ) ( , , ) ( , , , , , , ) ( 1) ( )
N

N i i i N
i

y y v v y v v v v v N y− +
=

≡ = − −∑v v*

where each term in the summation is a function of only one variable and can be 

subsequently expanded in a Taylor series at MPP 

{ } {* * * *
1 1, , , 0, ,0,

T T
N N HLv v v−= =v }β , yielding 

 ( )* *
1

1 1

1ˆ ( ) ( ) ( )
!

jN
j

i ij
j i i

yy y v v
j x

∞

= =

∂
= + −

∂∑ ∑v v v * . (4.2) 

In contrast, the Taylor series expansion of y(v) at { }* * *
1 , ,

T

Nv v=v  can be expressed by 

 ( ) ( )( )* *
2

1 1

1( )
!

jN j

i ij
j i i

yy y v v
j v

∞

= =

∂
= + − +

∂∑ ∑v v v R*

2

  (4.3) 

where the remainder  denotes all terms with dimension two and higher.  A comparison 

of Equations (4.2) and (4.3) indicates that the univariate approximation of  leads to 

a residual error ,  which includes contributions from terms of 

dimension two and higher.  For sufficiently smooth y(v) with convergent Taylor series, 

the coefficients associated with higher-dimensional terms are usually much smaller than 

2R

1ˆ ( )y v

1ˆ( ) ( )y y− =v v R

 



www.manaraa.com

  113

that with one-dimensional terms.  As such, higher-dimensional terms contribute less to 

the function, and therefore, can be neglected.  Nevertheless, Equation (4.1) includes all 

higher-order univariate terms, as compared with FORM and SORM, which only retain 

linear and quadratic univariate terms, respectively.   

It is worth noting that the univariate approximation in Equation (4.1) should not 

viewed as first- or second-order Taylor series expansions nor does it limit the 

nonlinearity of y(v).  According to Equation (4.2), all higher-order univariate terms of 

y(v) are included in the proposed approximation.   

 

4.2  Univariate Integration for Failure Probability Analysis 

The proposed univariate approximation of the performance function can be 

rewritten as 

  ,  (4.4) 
1

*
1

1

ˆ ( ) ( ) ( ) ( 1) ( )
N

N N i i
i

y y v y v N y
−

=

= + − −∑v v

where .  Due to rotational transformation 

of the coordinates (see Figure (3.1)), the univariate component function  in 

Equation (4.4) is expected to be a linear or a weakly nonlinear function of v

* * * *
1 1 1( ) ( , , , , , , );  1,i i i i i Ny v y v v v v v i N− +≡ =

( )N Ny v

N.  In fact, 

 is linear with respect to v( )N Ny v N in classical FORM/SORM approximations of a 

performance function in the v space.  Nevertheless, if  is invertible, the univariate 

approximation  can be further expressed in a form amenable to an efficient 

reliability analysis by one-dimensional numerical integration.  In this work, both linear 

( )N Ny v

1ˆ ( )y v
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and quadratic approximations of  and resultant equations for failure probability 

are derived, as follows. 

( )N Ny v

 

4.2.1 Linear Approximation of  ( )N Ny v

 Consider a linear approximation: 0 1( )N N Ny v b b v= + , where coefficients 0b ∈  

and  (non-zero) are obtained by least-squares approximations from exact or 

numerically simulated responses 

1b ∈

{ }(1) ( )( ), , ( )n
N N N Ny v y v  at n sample points along the vN 

coordinate.  Applying the linear approximation, the component failure probability can be 

expressed by 

[ ] [ ]
1

*
1 0 1

1

ˆ( ) 0 ( ) 0 ( ) ( 1) ( ) 0
N

F N i
i

P P y P y P b bV y V N y
−

=
i

⎡ ⎤≡ < ≅ < ≅ + + − − <⎢ ⎥⎣ ⎦
∑V V v ,  (4.5) 

which on inversion yields 

 

* 1
0

1
11 1

* 1
0

1
11 1

( 1) ( ) 1 ( ) , if 0

( 1) ( ) 1 ( ) , if 0

N

N i i
i

F N

N i i
i

N y bP V y V b
b b

P
N y bP V y V b

b b

−

=

−

=

⎧ ⎡ ⎤− −
< − >⎪ ⎢ ⎥

⎪ ⎣ ⎦≅ ⎨
⎡ ⎤− −⎪ ≥ −⎢ ⎥⎪ ⎣ ⎦⎩

∑

∑

v

v
<

  . (4.6) 

Since VN follows standard Gaussian distribution, the failure probability can also be 

expressed by 

 
* 1

0

11 1

( 1) ( ) 1 ( )
N

F
i

N y bP
b b

−

=
i iy V

⎡ ⎤⎛ ⎞− −
≅ Φ −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑vE , (4.7) 
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where  is the expectation operator and E ( ) ( ) ( )21 2 exp 2
u

u d
−∞

Φ = π −ξ∫ ξ  is the 

cumulative distribution function of a standard Gaussian random variable.  Note that 

Equation (4.7) provides higher-order estimates of failure probability if univariate 

component functions ( ),  1, 1i iy v i N= −  are approximated by higher than second-order 

terms.  If  retain only linear and quadratic terms fitted with 

appropriately selected sample points, Equation (4.7) can be further simplified to 

degenerate to the well-known FORM and SORM approximations. 

( ),  1, 1i iy v i N= −

 

4.2.2  Quadratic Approximation of  ( )N Ny v

The linear approximation described in the preceding can be improved by a 

quadratic approximation: , where coefficients , 2
0 1 2( )N N N Ny v b b v b v= + + 0b ∈ 1b ∈ , 

and  (non-zero) are also obtained by least-squares approximations from exact or 

numerically simulated responses at n sample points along the v

2b ∈

N coordinate.  Similarly, 

the quadratic approximation of  employed in Equation (4.4) leads to ( )N Ny v

[ ] [ ]
1

2 *
1 0 1 2

1

ˆ( ) 0 ( ) 0 ( ) ( 1) ( ) 0
N

F N N i
i

P P y P y P b bV b V y V N y
−

=
i

⎡ ⎤≡ < ≅ < ≅ + + + − − <⎢ ⎥⎣ ⎦
∑V V v . (4.8) 

By defining , where  is an N-1-

dimensional standard Gaussian vector, the following solutions are derived based on two 

cases: 

1
*

0
1

( ) ( ) ( 1) ( )
N

i i
i

B b y V N y
−

=

≡ + − −∑V v 1{ , , }T
NV V −=V 1
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 (a)  Case I – Trivial Solution (b1
2 – 4b2B < 0; no real roots): 

 2

2

0, if 0
1, if 0F

b
P

b
>⎧

≅ ⎨ <⎩
    . (4.9) 

 (b)  Case II – Non-Trivial Solution (b1
2 – 4b2B ≥ 0; two real roots): 

2 2
1 1 2 1 1 2

2
2 2

2 2
1 1 2 1 1 2

2
2 2

4 ( ) 4 ( )
, if 0

2 2

4 ( ) 4 ( )
, if 0

2 2

N
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b b b B b b b B
P V

b b
P

b b b B b b b B
P V

b b

⎧ ⎡ ⎤− − − − + −⎪ ⎢ ⎥ b

b

< < >
⎪ ⎢ ⎥⎪ ⎣ ⎦≅ ⎨

⎡ ⎤⎪ − + − − − −
⎢ ⎥< < <⎪
⎢ ⎥⎪ ⎣ ⎦⎩

V V

V V
  , (4.10) 

yielding 

2 2
2 2 1 1 2 1 1 2

2 2

1 4 ( ) 4 ( )
2 2 2F

b b b b b B b b b B
P

b b

⎧ ⎫⎡ ⎤ ⎡⎛ ⎞ ⎛− − + − − − −⎪ ⎪⎢ ⎥ ⎢⎜ ⎟ ⎜≅ + Φ − Φ⎨ ⎬⎜ ⎟ ⎜⎢ ⎥ ⎢⎪ ⎪⎝ ⎠ ⎝⎣ ⎦ ⎣⎩ ⎭

V V
E E

⎤⎞
⎥⎟
⎟⎥⎠⎦

. (4.11) 

Both Equations (4.7) and (4.11) can be employed for non-trivial solutions of failure 

probability.  Improvement of the accuracy of results, if any, depends on how strongly 

 depends on v( )N Ny v N. Furthermore, it is possible to develop a generalized version of 

Equation (4.11) when  is highly nonlinear (e.g., polynomial of an arbitrary order), 

but invertible.  However, due to the rotational transformation from the x space to the v 

space, it is expected that the linear approximation of  (Equation (4.7)) should 

result in a very accurate solution.  Hence, the present study is limited to only linear and 

quadratic approximations of .  It is worth noting that unlike Equation (4.7), 

Equation (4.11) cannot be reduced to FORM/SORM equations as  includes a 

second-order term. 

( )N Ny v

( )N Ny v

( )N Ny v

( )N Ny v
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4.2.3  Univariate Integration 

The failure probability expressions in Equations (4.7) and (4.11) involve 

calculation of expected values of several multivariate functions of an N-1 dimensional 

standard Gaussian vector .  A generic expression of such calculation 

requires determining 

1{ , , }T
NV V −=V 1

( )( )f⎡Φ⎣ VE ⎤
⎦ , where  is a general mapping of V  and 

depends on how univariate component functions 

1: Nf −

( ),  1, 1i iy v i N= −  are approximated.  

Unfortunately, the exact probability density function of  is in general not available in 

closed form.  For this reason, it is difficult to calculate 

( )f V

( ( )f )⎡ ⎤Φ⎣ ⎦VE  analytically.  

Numerical integration is not efficient as ( )( )fΦ v  is a multivariate function and becomes 

impractical when the dimension exceeds three or four.  

In reference to Equation (4.1), consider again a univariate approximation of 

, expressed by ( )ln ( )fΦ⎡⎣ v ⎤⎦

)f ( ) ( ) ( ) (
1

*

1
ln ( ) ln ( ) 2 ln ( )

N

i i
i

f f v N
−

=

⎡ ⎤Φ ≅ Φ − − Φ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦∑v v , (4.12) 

where  are univariate component functions and 

.  Hence, 

* * *
1 1 1( ) ( , , , , , , )i i i i i Nf v f v v v v v− + −≡ *

1

*
1

* *
1( ) ( , , )Nf f v v −≡v

 

( ) ( ){ }
( ) ( ) ( )

( )

( )

1
*

1

1

1
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( )
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N
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N

i i
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N

f f

f v N f
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−

=

−

=
−

Φ = Φ⎡ ⎤⎣ ⎦

⎧ ⎫⎡ ⎤≅ Φ − − Φ⎡ ⎤⎨ ⎬⎣ ⎦ ⎣ ⎦⎩ ⎭

Φ
=

Φ

∑

∏

v v
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  . (4.13) 
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yielding 

 ( )
( )

( )

( )

( )

1 1

1 1
2 2* *

( ) ( ) ( )
( )

( ) ( )

N N
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Φ Φ φ⎡ ⎤⎣ ⎦
⎡ ⎤Φ ≅ =⎣ ⎦ Φ Φ

⌠⎮
⌡∏ ∏

V
v v

E
E

v dv
, (4.14) 

which involves a product of N-1 univariate integrals with φ(⋅) denoting standard Gaussian 

probability density function.  Using Equation (4.14), the nontrivial expressions of failure 

probability in Equations (4.7) and (4.11) are 
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and 
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   (4.16) 

respectively, where .  The univariate integration 

involved in Equations (4.15) or (4.16) can be easily evaluated by standard one-

* * *
1 1 1( ) ( , , , , , , )i i i i i NB v B v v v v v− + −≡ *

1
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dimensional Gauss-Hermite numerical quadrature (Abramowitz, 1972).  The 

decomposition method involving univariate approximation (Equation (4.1)) and 

univariate integration (Equations (4.15) or (4.16)) is defined as the MPP-based univariate 

method with numerical integration in this chapter. 

 

4.3  Computational Effort and Flow 

Consider ; * * * *
1 1 1( ) ( , , , , , , )i i i i i Ny v y v v v v v− +≡ 1, 1i N= −

j j
i i i i i Ny v y v v v v v− +≡ 1, ,

, for which n function 

values ; ( ) * * ( ) * *
1 1 1( ) ( , , , , , , ) j n=  are required to be evaluated 

at integration points  to perform an n-order Gauss-Hermite quadrature for ith 

integration in Equations (4.15) or (4.16).  The same procedure is repeated for N-1 

univariate component functions, i.e., for all 

( )j
i iv v=

( ),  1, , 1i iy v i N= − .  Therefore, the total 

cost of the proposed univariate method including n function values of  required 

for its linear or quadratic approximation entails a maximum of  function 

evaluations

( )N Ny v

1nN +

1.  Note that the above cost is in addition to any function evaluations required 

for locating the MPP.  

 Figure 4.1 shows the computational flowchart of the MPP-based univariate 

method with numerical integration.  The proposed effort in evaluating the failure 

probability has been transformed into numerically calculating univariate component 

functions at selected input determined by sample points in the vN-coordinate and Gauss-

                                                 
1  The orders of numerical integration and the number of function values of  need not be the same.   

In addition, different orders of integration can be employed if desired. 
( )N Ny v
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Hermite integration points in the vi-coordinate (i = 1,N-1).  Compared with the previously 

developed univariate method (Rahman and Wei, 2006), no Monte Carlo simulation is 

required in the present method.  The accuracy and efficiency of the new method depend 

on both the univariate approximation and numerical integration.  They will be evaluated 

using several numerical examples in a forthcoming section. 

 In performing n-order Gauss-Hermite quadratures in Equations (4.15) or (4.16), 

two options for evaluating  are proposed.  Option 1 involves calculating  at 

integration points  from direct numerical analysis 

(e.g., finite element analysis).   When computing  is expensive, the first option is 

inefficient if n is required to be large for accurate numerical integration.  The second 

option involves developing first a univariate response-surface approximation of  

from selected samples points in the v

( )i iy v ( )( j
i iy v )

n* * ( ) * *
1 1 1( , , , , , , );  1,j

i i i Nv v v v v j− + =

( )i iy v

( )i iy v

i-coordinate, followed by numerical integration of 

the response-surface approximation.  Option 2 is computationally efficient, because no 

additional numerical analysis (e.g., finite element analysis) is required if the order of 

integration is larger than the number of sample points.  However, an additional layer of 

response surface approximation is involved in the second option.  Both options were 

explored in numerical examples, as follows. 

 

4.4  Numerical Examples 

 Five numerical examples involving explicit performance functions from 

mathematical or solid-mechanics problems (Examples 1 and 2) and implicit performance 
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functions from structural or solid-mechanics problems (Examples 3, 4, and 5), are 

presented to illustrate the MPP-based univariate method with numerical integration.  

Whenever possible, comparisons have been made with the previously developed MPP-

based univariate method with simulation (Rahman and Wei, 2006), FORM/SORM, and 

direct Monte Carlo simulation to evaluate the accuracy and computational efficiency of 

the new method.   

 To obtain linear or quadratic approximation of , n (= 5, 7 or 9) sample 

points 

( )N Ny v

* * * * *( 1) 2 , ( 3) 2, , , , ( 3) 2 , ( 1) 2N N N N Nv n v n v v n v n− − − − + − + −  were 

deployed along the vN-coordinate.  The same value of n was employed as the order of 

Gauss-Hermite quadratures in Equations (4.15) or (4.16) of the proposed univariate 

method with numerical integration.  Furthermore, option 1 was used in Examples 3 and 4 

and option 2 was invoked in Examples 1,2 and 5.  When using option 2, an nth-order 

polynomial equation was employed for generating response-surface approximation of 

various component functions ( ),  1, 1i iy v i N= − .  For a consistent comparison, the same 

value of n was also employed as the number of sample points in the previously developed 

univariate method with simulation (Rahman and Wei, 2006).  Hence, the total number of 

function evaluations required by both versions of the univariate method, in addition to 

those required for locating the MPP, is ( 1)−n N .  When comparing computational efforts 

by various methods, the number of original performance function evaluations is chosen 

as the primary metric in this paper.   
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4.4.1 Example Set I: Explicit Performance Functions 

4.4.1.1  Example 1 – Elementary Mathematical Functions 

 Consider a cubic and a quartic performance functions, expressed respectively by 

(Rahman and Wei, 2005) 

 ( ) (3
1 2 1 2 1 2

0.025 2 33( , ) 2.2257 20
27 140

g X X X X X X= − + − + − )  (4.17) 

and 

 ( ) (4
1 2 1 2 1 2

5 1 33( , ) 20
2 216 140

= + + − − −g X X X X X X ) , (4.18) 

where  are independent, Gaussian random variables, each with 

mean µ = 10 and standard deviation σ = 3.  From an MPP search,  and 

2(10,3 ),  1, 2iX N i =

* {0,2.2257}T=v

* 2.2257HLβ = =v  for the cubic function and  and * {0,2.5}T=v * 2.5HLβ = =v  for the 

quartic function.  For both variants of the univariate method, a value of n = 5 was 

selected, resulting 9 function evaluations.  Since both performance functions in the 

rotated Gaussian space are linear in v2, the proposed method involving Equation (4.16) 

was employed to calculate the failure probability. 

           Tables 4.1 and 4.2 show the results of the failure probability calculated by FORM, 

SORM (Breitung, 1984; Hohenbichler, et al., 1987; Cai and Elishakoff, 1994), MPP-

based univariate method with simulation (Rahman and Wei, 2006), proposed MPP-based 

univariate method with numerical integration, and direct Monte Carlo simulation using 

106 samples.  The univariate method with simulation, which yields exact limit-state 
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equations in this particular example, predicts the same probability of failure by the direct 

Monte Carlo simulation.  The univariate method with numerical integration also yields 

exact limit-state equations and predicts very accurate estimates of failure probability 

when compared with simulation results.  A slight difference in the failure probability 

estimates by two versions of the univariate method is due to approximations involved in 

Equations (4.5) and (4.13) of the proposed method.  Nevertheless, other commonly used 

reliability methods, such as FORM and SORM, underpredict failure probability by 31 

percent and overpredict failure probability by 117 percent when compared with the direct 

Monte Carlo results.   The SORM results are the same as the FORM results, indicating 

that there is no improvement over FORM for problems involving inflection point (cubic 

function) or high nonlinearity (quartic function). 

 

4.4.1.2  Example 2 – Burst Margin of a Rotating Disk 

 Consider an annular disk of inner radius Ri, outer radius Ro, and constant thickness 

 (plane stress), as shown in Figure 3.3.  The disk is subject to an angular velocity 

ω about an axis perpendicular to its plane at the center.  The maximum allowable angular 

velocity ω

ot R

a when tangential stresses through the thickness reach the material ultimate 

strength Su factored by a material utilization factor αm is (Boresi and Schmidt, 2003) 

 ( )
( )

1 2

3 3

3 m u o i
a

o i

S R R
R R

⎡ ⎤α −
⎢ ⎥ω =

ρ −⎢ ⎥⎣ ⎦
, (4.19) 

where ρ is the mass density of the material.  According to an SAE G-11 standard, the 

satisfactory performance of the disk is defined when the burst margin Mb, defined as  
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 ( )
( )

1 2

2 3 3

3 m u o ia
b

o i

S R R
M

R R

⎡ ⎤α −ω
⎢ ⎥≡ =

ω ρω −⎢ ⎥⎣ ⎦
, (4.20) 

exceeds a critical threshold of 0.37473 (Penmetsa and Grandhi, 2003).  If random 

variables , 1 mX = α 2 uX S= , 3X = ω , 4X = ρ , 5 oX R= , and 6 iX R= , and have their 

statistical properties defined in Table 3, the performance function becomes 

 1 2 3 4 5 6( ) ( , , , , , ) 0.37473.bg M X X X X X X= −X  (4.21) 

 Table 4.4 presents predicted failure probability of the disk and associated 

computational effort using new and existing MPP-based univariate methods, FORM, 

Hohenbichler’s SORM (Hohenbichler, et al., 1987), and direct Monte Carlo simulation 

(106 samples).  For univariate methods, a value of n = 7 was selected.  For the univariate 

method with numerical integration, failure probabilities based on linear (Equation (4.15)) 

and quadratic (Equation (4.16)) approximations are almost identical, which verifies the 

adequacy of the linear approximation of  in this example.  The results also 

indicate that the univariate methods using either simulation or numerical integration 

produce the most accurate solution.  FORM and SORM slightly underpredict the failure 

probability.  Both univariate methods surpass the efficiency of SORM in solving this 

particular reliability problem. 

( )N Ny v

 

4.4.1.3  Example 3 – Ten-Bar Truss Structure 

A ten-bar, linear-elastic, truss structure, shown in Figure 3.4, was studied in this 

example to examine the accuracy and efficiency of the proposed reliability method.  The 

Young’s modulus of the material is 107 psi.  Two concentrated forces of 105 lb are 
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applied at nodes 2 and 3, as shown in Figure 3.4.  The cross-sectional area , 1, ,10iX i =  

for each bar follows truncated normal distribution clipped at 0ix =  and has mean µ = 2.5 

in2 and standard deviation σ = 0.5 in2.  According to the loading condition, the maximum 

displacement [( ] occurs at node 3, where a permissible displacement is 

limited to 18 in.  Hence, the performance function is . 

3 1 10( , , )v X X

( )3 1 10( ) 18 , ,g v X= −X X

           From the MPP search involving finite-difference gradients, the reliability index is 

* 1.3642HLβ = =v .  Table 4.5 shows the failure probability of the truss, calculated using 

the proposed MPP-based univariate method with numerical integration, MPP-based 

univariate method with simulation (Rahman and Wei, 2006), FORM, three variants of 

SORM due to Breitung (1984), Hohenbichler (1987) and Cai and Elishakoff (1994), and 

direct Monte Carlo simulation (106 samples).  For univariate methods, a value of n = 7 

was selected.  As can be seen from Table 4.5, both versions of the univariate method 

predict the failure probability more accurately than FORM and all three variants of 

SORM.  This is because univariate methods are able to approximate the performance 

function more accurately than FORM/SORM.  The univariate method with numerical 

integration involving the quadratic approximation of  yields slightly more 

accurate result than that based on its linear approximation.  A comparison of the number 

of function evaluations, also listed in Table 4.5, indicates that the computational effort by 

the MPP-based univariate methods is slightly larger than FORM, but much less than 

SORM. 

( )N Ny v
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4.4.2 Example Set II: Implicit Performance Functions 

4.4.2.1  Example 4 – Mixed-Mode Fracture-Mechanics Analysis 

 The fourth example involves an isotropic, homogeneous, edge-cracked plate, 

presented to illustrate mixed-mode probabilistic fracture-mechanics analysis using the 

proposed univariate method.  As shown in Figure 3.5(a), a plate of length L = 16 units, 

width W = 7 units is fixed at the bottom and subjected to a far-field and a shear stress τ∞ 

applied at the top.  The elastic modulus and Poisson’s ratio are 1 unit and 0.25, 

respectively.  A plane strain condition was assumed.  The statistical property of the 

random input { }, ,
T

Ica W K∞= τX is defined in Table 4.6. 

Due to the far-field shear stress ∞τ , the plate is subjected to mixed-mode 

deformation involving fracture modes I and II (Anderson, 1995).  The mixed-mode 

stress-intensity factors ( )IK X  and ( )IIK X  were calculated using an interaction integral 

(Yau, et al., 1980).  The plate was analyzed using the finite-element method involving a 

total of 832 8-noded, regular, quadrilateral elements and 48 6-noded, quarter-point 

(singular), triangular elements at the crack-tip, as shown in Figure 3.5(b).   

The failure criterion is based on a mixed-mode fracture initiation using the 

maximum tangential stress theory (Anderson, 1995), which leads to the performance 

function  

             2 ( ) 3 ( )( ) ( )cos ( )sin ( ) cos
2 2 2Ic I IIg K K KΘ⎡ ⎤= − − Θ⎢ ⎥⎣ ⎦

ΘX XX X X X , (4.22) 
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where is statistically distributed fracture toughness and IcK ( )cΘ X  is the direction of 

crack propagation. 

Failure probability estimates of [ ( ) 0]FP P g= <X , obtained using the proposed 

univariate method with numerical integration, univariate method using simulation, 

FORM, Hohenbichler’s SORM, and direct Monte Carlo simulation, are compared in 

Figure 4.2 and are plotted as a function of [ ]∞τE , where  is the expectation operator.    

For each reliability analysis (i.e., each point in the plot), FORM and SORM require 29 

and 42 function evaluations (finite-element analysis).  Using n = 9, the MPP-based 

univariate methods require only 53 (= 29 + 24) function evaluations, whereas 50,000 

finite-element analyses were employed in the direct Monte Carlo simulation.  The results 

show that both versions of the univariate method are more accurate than other methods, 

particularly when the failure probability is low.  The computational effort by univariate 

methods is slightly higher than that by FORM/SORM, but much lower than that by the 

direct Monte Carlo simulation. 

E

 

4.4.2.2  Example 5 – Three-Span, Five–Story Frame Structure 

The final example examines the accuracy and efficiency of the proposed 

univariate method for solving reliability problems involving correlated random variables.  

A three-span, five-story frame structure, originally studied by Liu and Kiureghian (1986), 

is subjected to horizontal loads, as shown in Figure 4.3.  There are totally 21 random 

variables: (1) three applied loads, (2) two Young’s moduli, (3) eight moments of inertia, 

and (4) eight cross-sectional areas.  Tables 4.7-4.9 list the statistical properties of these 
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variables.  The lognormally distributed load variables are independent and all other 

random variables are assumed to be jointly normal.  Failure is defined when the 

horizontal component of the top floor displacement ( )1u X  exceeds 0.2 ft, leading to the 

limit-state function ( )1( ) 0.2g u= −X X .  

The MPP-based univariate methods with numerical integration and simulation, 

FORM, Hohenbichler’s SORM, and direct Monte Carlo simulation were employed to 

estimate the failure probability and are listed in Table 4.10.  For the reliability analysis, 

FORM and SORM require 474 and 1143 function evaluations (frame analysis), 

respectively.  Using n = 7, the univariate methods require 595 function evaluations, 

whereas 1,000,000 frame analyses are needed by the direct Monte Carlo simulation.  For 

the univariate method with numerical integration, the linear approximation of  

was employed.  The results clearly show that both versions of the univariate method 

provide more accurate results than FORM and SORM.  In terms of computational effort, 

the method developed is slightly more expensive than FORM, but significantly more 

efficient than SORM. 

( )N Ny v

In all numerical examples presented, the number of function evaluations required 

by both versions of the univariate method is the same.  However, the present univariate 

method developed does not require any Monte Carlo simulation embedded in its previous 

version.  Instead, explicit forms of failure probability requiring only one-dimensional 

integrations have been formulated.  Hence, the new method should be useful in deriving 

sensitivity (gradients) of failure probability for reliability-based design optimization, 

which is a subject of current research by the authors. 
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Table 4.1  Failure probability for cubic performance function 
 

 
Method 

Failure  
probability 

Number of function 
evaluations(a)

MPP-based univariate method with 
numerical integration 

0.01895 29(b)

MPP-based univariate method with 
simulation (Rahman and Wei, 2006) 

0.01907 29(b)

FORM 0.01302 21 
SORM (Hohenbichler et al., 1987) 0.01302 204 
Direct Monte Carlo simulation 0.01907 1,000,000 

 (a) Total number of times the original performance function is calculated. 

 (b) 21  ( 1) 21 (5 1) 2 29n N+ − × = + − × =

 
 
 
 
 

Table 4.2  Failure probability for quartic performance function 
 

 
Method 

Failure  
probability 

Number of function 
evaluations(a)

MPP-based univariate method with 
numerical integration 

0.003030 29(b)

MPP-based univariate method with 
simulation (Rahman and Wei, 2006) 

0.002886 29(b)

FORM 0.006209 21 
SORM (Hohenbichler et al., 1987) 0.006208 212 
Direct Monte Carlo simulation 0.002886 1,000,000 

 (a) Total number of times the original performance function is calculated. 

 (b) 21  ( 1) 21 (5 1) 2 29n N+ − × = + − × =
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Table 4.3  Statistical properties of random input for rotating disk 
 

Random 
variable 

 
Mean 

Standard 
deviation 

Probability 
distribution 

αm 0.9377 0.0459 Weibull(a)

Su, ksi 220 5 Gaussian 

ω, rpm 24 0.5 Gaussian 

ρ, lb-sec2/in4 0.29/g(b) 0.0058/g(b) Uniform(c)

Ro, in 24 0.5 Gaussian 

Ri, in 8 0.3 Gaussian 

 (a) Scale parameter = 25.508; shape parameter = 0.958 

 (b) g = 385.82 in/sec2

 (c) Uniformly distributed over (0.28,0.3). 
 

 
 

Table 4.4 Failure probability of rotating disk 
 
 

 
Method 

Failure  
probability 

Number of function 
evaluations(a)

MPP-based univariate method with 
numerical integration 

Linear (Equation (4.15)) 
Quadratic (Equation (4.16)) 

 
 
0.00099 
0.00099 

 
 
167(b)

167(b)

MPP-based univariate method with 
simulation (Rahman and Wei, 2006) 

0.00101 167(b)

FORM 0.00089 131 
SORM (Hohenbichler, et al., 1987) 0.00097 378 
Direct Monte Carlo simulation 0.00104 1,000,000 

 (a) Total number of times the original performance function is calculated. 

 (b) 131  ( 1) 131 (7 1) 6 167n N+ − × = + − × =
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Table 4.5  Failure probability of ten-bar truss structure 
 
 

 
Method 

Failure  
probability 

Number of function 
evaluations(a)

MPP-based univariate method with 
numerical integration 

Linear (Equation (4.15)) 
Quadratic (Equation (4.16)) 

 
 
0.1457 
0.1400 

 
 
187(b)

187(b)

MPP-based univariate method with 
simulation (Rahman and Wei, 2006) 

0.1465 187(b)

FORM 0.0862 127 
SORM (Breitung, 1984) 0.1286 506 
SORM (Hohenbichler, et al., 1987) 0.1524 506 
SORM (Cai and Elishakoff, 1994) 0.1467 506 
Direct Monte Carlo simulation 0.1394 1,000,000 

 (a) Total number of times the original performance functions is calculated. 

 (b) 127  ( 1) 127 (7 1) 10 187n N+ − × = + − × =

 

 

Table 4.6  Statistical properties of random input for  
an edge-cracked plate 

 
 

Random 
variable 

 
Mean 

Standard 
deviation 

Probability 
distribution 

a/W 0.5 0.2309 Uniform(a)

τ∞ Variable (b) 0.1 Gaussian 

KIc 200 0.1 Lognormal 

(a) Uniformly distributed over (0.3, 0.7). 

(b) Varies from 2.6 to 3.1.   
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Table 4.7  Frame element properties 
 

Element Young’s 
modulus 

Moment of 
inertia 

Cross-sectional 
 area 

B1 E4 I10 A18

B2 E4 I11 A19

B3 E4 I12 A20

B3 E4 I13 A21

C1 E5 I6 A14

C2 E5 I7 A15

C3 E5 I8 A16

C4 E5 I9 A17
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Table 4.8  Statistical properties of random input for frame structure(a) 

 
 

Random 
variable 

 
Mean 

Standard 
deviation 

Probability 
distribution 

P1 30 9 Lognormal 

P2 20 8 Lognormal 

P3 16 6.40 Lognormal 

E4 454,000 40,000 Normal 

E5 497,000 40,000 Normal 

I6 0.94 0.12 Normal 

I7 1.33 0.15 Normal 

I8 2.47 0.30 Normal 

I9 3.00 0.35 Normal 

I10 1.25 0.30 Normal 

I11 1.63 0.40 Normal 

I12 2.69 0.65 Normal 

I13 3.00 0.75 Normal 

A14 3.36 0.60 Normal 

A15 4.00 0.80 Normal 

A16 5.44 1.00 Normal 

A17 6.00 1.20 Normal 

A18 2.72 1.00 Normal 

A19 3.13 1.10 Normal 

A20 4.01 1.30 Normal 

A21 4.50 1.50 Normal 
  
                (a) The units of Pi, Ei, Ii, and Ai are kip, kip/ft2, ft4, and ft2, respectively.  
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Table 4.10  Failure probability of frame structure 
 
 

 
Method 

Failure  
Probability 

Number of function 
evaluations(a)

MPP-based univariate method with 
numerical integration 

3.829×10-4 600(b)

MPP-based univariate method with 
simulation (Rahman and Wei, 2006) 

3.720×10-4 600(b)

FORM 7.891×10-4 474 
SORM (Hohenbichler, et al., 1987) 1.402×10-4 1,143 
Direct Monte Carlo simulation 3.630×10-4 1,000,000 

 (a) Total number of times the original performance functions is calculated. 

 (b) 474  ( 1) 474 (7 1) 21 600n N+ − × = + − × =
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Figure 4.1  Flowchart of the MPP-based univariate method with numerical 

integration 
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Figure 4.2  Probability of fracture initiation in an edge-cracked plate 
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Figure 4.3  A three-span, five-story frame structure subjected to lateral loads 
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CHAPTER 5 

MULTIPLE MPP PROBLEMS 

This chapter presents extension of the univariate method for multiple most 

probable point (MPP) problems.  If all MPPs can be identified, and a high nonlinearity 

exists in a limit state around some or all of these MPPs, then existing analytical methods, 

such as multipoint FORM/SORM, and simulation-based methods may not be accurate or 

provide computationally efficient solutions.  It has been demonstrated that the MPP-

based univariate decomposition method (Chapters 3 and 4) is more accurate than 

analytical methods, and more efficient than simulation methods.  In this chapter, an 

integrated decomposition method with the barrier method to locate all MPPs, is proposed 

as a new strategy to solve multiple MPP problems. The barrier method is described in 

Appendix C.    

5.1  Performance Function Decomposition at the mth MPP  

 Consider a continuous, differentiable, real-valued performance function g(x) that 

depends on .  The transformed limit state  is the map of 

 in the standard Gaussian space (u space), as shown in Figure 5.1 for N = 2.  Let 

the performance function contain M number of MPPs 

1{ , , }T
Nx x=x " N∈\

*

( ) 0h =u

( ) 0g =x

*
1 , , Mu u"  with corresponding 

distances 1, , Mβ β" , as shown in Figure 5.1.   

 For the mth MPP, define an associated local coordinate system 

, where  is the coordinate in the direction of the MPP, as depicted 

in Figure 5.1.  In the v

,1 ,{ , ,m m m Nv v=v " } ,m Nv

m space, denote the mth MPP by * {0, ,0, }m m= βv "  and the 
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performance function by ( ) 0m my =v , which is also a map of the original limit state 

.  A decomposition of a general multivariate function , described by  ( ) 0g =x ( )m my v

1 2 1 2

1 2
1 2

,1

,2

,0 , , , , , ,12 ,1 ,
1 , 1

ˆ ( )

ˆ ( )

( ) ( ) ( , ) ( , , )

m m

m m

N N

m m m m i m i m i i m i m i m N m m N
i i i

i i
y

y

y y y v y v v y v v
= =

<
=

=

= + + + +∑ ∑
v

v

v "" "
����	���

��������	�������


    (5.1) 

can be viewed as a finite hierarchical expansion of an output function in terms of its input 

variables with increasing dimension, where ym,0 is a constant, is a 

univariate component function representing individual contribution to  by input 

variable  acting alone,  is a bivariate component function 

describing cooperative influence of two input variables , and so on.  If 

, ,( ) :m i m iy v \6 \

( )m my v

,m iv
1 2 1 2

2
, , ,( , ) :m i i m i m iy v v \ 6 \

1, and m i m iv v
2,

,1 2 1 2 1 1

1 2 1
1 2 1

, ,0 , , , , , , ,
1 , 1 , , 1

ˆ ( ) ( ) ( , ) ( , , )
S s

S
S

N N N

m S m m m i m i m i i m i m i m i i m i m i
i i i i i

i i i i

y y y v y v v y v v
= = =

< < <

= + + + +∑ ∑ ∑v "
"
"

" "   (5.2) 

represents a general S-variate approximation of , the univariate (S = 1) 

approximation  provides a two-term approximant of the finite decomposition in 

Equation (5.1).   Similarly, bivariate, trivariate, and other higher-variate approximations 

can be derived by appropriately selecting the value of S.  The fundamental conjecture 

underlying this work is that component functions arising in the function decomposition 

will exhibit insignificant S-variate effects cooperatively when S → N, leading to useful 

lower-variate approximations of .   In the limit, when S = N,  converges 

to the exact function .  In other words, Equation (5.2) generates a hierarchical and 

convergent sequence of approximations of .  Readers interested in the 

( )m my v

,1ˆ ( )m my v

( )m my v ,1ˆ ( )m my v

( )m my v

( )m my v
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fundamental development of the decomposition method are referred to authors’ past 

work. 

 

5.2  Multi-Point Univariate Decompostion Method  

5.2.1 Univariate Decomposition of Performance Function 

 At the mth MPP, consider a univariate (S = 1) approximation of , denoted 

by 

( )m my v

,0, ,

*
,1 ,1 ,1 , ,

1
( )

ˆ ˆ( ) ( , , ) (0, ,0, ,0, , ) ( 1) ( )
mm i m i

N

m m m m m N m m i m m m
i yy v

y y v v y v N y
= ==

≡ = β − −∑v v" " " ���	��
�����	����
 ,      (5.3) 

where  and *( ) (0, ,0,m m m my y≡ βv " ) , , ,( ) (0, ,0, ,0, , )m i m i m m i my v y v≡ β" " .  Using a 

multivariate function theorem, it can be shown that the univariate approximation  

leads to the residual error 

,1ˆ ( )m my v

,1ˆ( ) ( )m m m my y−v v , which includes contributions from terms of 

dimension two and higher.  For a sufficiently smooth  with a convergent Taylor 

series, the coefficients associated with higher-dimensional terms are usually much 

smaller than that with one-dimensional terms.  As such, higher-dimensional terms 

contribute less to the function, and therefore, can be neglected.  Nevertheless, Equation 

(5.3) includes all higher-order univariate terms.  In contrast, FORM and SORM also 

entail univariate approximations, but retain only linear and quadratic univariate terms, 

respectively.  Hence, Equation (5.3) should provide in general a higher-order 

approximation of the performance function than those by commonly employed 

FORM/SORM. 

( )m my v
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5.2.2  Lagrange Interpolation and Return Mapping 

 Consider the univariate component function , , ,( ) (0, ,0, ,0, , )m i m i m m i my v y v≡ β" "  

in Equation (5.3).  If for sample points , n function values 

; 

( )
, , ; 1, ,j

m i m iv v j= = " n

" " 1, ,j n( )
, ,(0, ,0, ,0, , )j

mi j m m i mA y v≡ β = "

)

 are given, the function value for an 

arbitrary  can be obtained by the Lagrange interpolation ,m iv

 , (5.4) ( )
, , , , , ,

1 1

( ) ( ) (0, ,0, ,0, , ) (
n n

j
m i m i j m i m m i m mi j j m i

j j

y v v y v A v
= =

= φ β = φ∑ ∑" "

where  

 
( )

( )

( )
, ,

1,
,

( ) ( )
, ,

1,

( )

n
k

m i m i
k k j

j m i n
j k

m i m i
k k j

v v
v

v v

= ≠

= ≠

−
φ =

−

∏

∏
 (5.5) 

is the shape function.  By using Equations (5.4) and (5.5), arbitrarily many values of 

can be generated if n,(i m iy v )

A

)

M V

V

 values of that component function are given.  The same 

procedure is repeated for all univariate component functions, i.e., for all 

, leading to an explicit univariate approximation  , ,( ),  1, ,m i m iy v i N= "

 , (5.6) ,1 , , ,0
1 1

ˆ ( ) ( ) ( 1)
N n

m m mi j j m i m
i j

y A V N
= =

≅ φ − −∑ ∑V

where .  By developing similar decompositions at all MPPs (i.e., for all 

), univariate approximations associated with M number 

of MPPs can be generated. 

*
,0 (m m mA y≡ v

1, ,m = " 1,1 1 ,1ˆ ˆ( ), , ( )M My yV "

  The functions  represent M local approximations in vicinities 

of MPPs 

1,1 1 ,1ˆ ˆ( ), , ( )M My yV "

* *
1 , , Mv v"  of 1, , Mv v"  spaces, respectively.  To describe these approximations 
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in a common space, such as the u space, consider a return mapping , where m m=u R v

,[ ];  , 1, ,m m ikR i k N= =R "  is an N N×  orthogonal rotation matrix associated with the 

mth MPP.  Consequently, M local approximations of the performance function in the u 

space become 

 , (5.7) ,1 , , ,0
1 1 1

ˆ ( ) ( 1) ;  1, ,
N n N

m mi j j m ki k m
i j k

h A R U N A m
= = =

⎛ ⎞= φ − − =⎜ ⎟
⎝ ⎠

∑ ∑ ∑U " M

as schematically depicted in Figure 5.1.  Therefore, the actual failure domain, defined by 

 { } { }: ( ) 0 : ( ) 0F g hΩ ≡ < =x x u u <  (5.8) 

and represented by the shaded area in Figure 5.1 can be approximated by a union of M 

failure sub-domains 1,1 ,1
ˆ ˆ( ) 0, , ( ) 0Mh h< <u " u

0

, thereby yielding the univariate 

approximation 

 ,1
1

ˆˆ : ( )
M

F m
m

h
=

⎧ ⎫
Ω = <⎨ ⎬

⎩ ⎭
u u∪ . (5.9) 

Note that the boundary of the failure domain ˆ
FΩ  can be highly nonlinear, which depends 

on how  or  are constructed.  In contrast, FORM/SORM produce only 

multi-linear or multi-quadratic boundaries, also plotted in Figure 5.1.  Therefore, the 

failure domain defined by Equation (5.9) with a Lagrange interpolation order n > 2 

should provide a higher-order approximation than that by the multi-point FORM/SORM. 

,1ˆ ( )m my v ,1
ˆ ( )mh u

 

5.2.3  Monte Carlo Simulation 

 Once the Lagrange shape functions ,(j m iv )φ  and deterministic coefficients 

 are generated for all , ;  1, ,mi jA j = " n N1, ,i = "  and 1, ,m M= " , Equation (5.7) 
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provides explicit local approximations of the performance function in terms of the 

random input U.  Therefore, any probabilistic characteristics of a response, including its 

moments and probability density function, can be easily evaluated by performing Monte 

Carlo simulation on Equation (5.7).  For a component reliability analysis, the Monte 

Carlo estimate of the failure probability employing the proposed univariate 

approximation is 

 ( ) ( )
,1

1 1

1 ˆˆ ( ) 0
SN M

l
F F m

l mS

P P h
N = =

⎡ ⎤
≅ ∈Ω ≅ <⎢ ⎥

⎣ ⎦
∑U ∪I u

)

, (5.10) 

where  is the lth realization of U, N( )lu S is the sample size, and  is an indicator 

function such that  if  is in the failure set (i.e., when ) and zero 

otherwise.   Since Equations (5.7) and (5.9) are explicit and do not require additional 

numerical evaluations of response (e.g., solving governing equations by expensive finite 

element analysis), the embedded Monte Carlo simulation can be efficiently conducted for 

any sample size.   

[ ]⋅�I

1=�I ( )lu ( ) ˆl
F∈Ωu

 The proposed method involving multi-point univariate approximation, n-point 

Lagrange interpolation, and Monte Carlo simulation is defined as the multi-point 

univariate decomposition method in this paper.  Figure 5.2 shows the computational 

flowchart of the method developed. 

 

5.3  Computational Effort  

 The multi-point univariate decomposition method requires evaluation of 

coefficients  and *
,0 (m m mA y= v ( )

, ,(0, ,0, ,0, , )j
mi j m m i mA y v= β" " ; for 1, ,j n= " ; 

 and .  Hence, the computational effort required by the proposed 1, ,i N= " 1, ,m = " M
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method can be viewed as numerically evaluating the original performance function at 

several deterministic input defined by user-selected sample points.  For each MPP, there 

are n numerical evaluations of  involved in Equation (5.4).  Therefore, the total 

cost for the multi-point univariate method entails a maximum of 

( )m my v

[ 1]M nN + 1 function 

evaluations in addition to those required for locating all MPPs.  If the sample points 

include a common point in each coordinate (see the forthcoming section), the number of 

function evaluations reduces to [( 1) 1]M n N− + .   

 

5.4  Numerical Examples 

 Three numerical examples involving explicit performance functions from 

mathematical problems (Examples 1 and 2) and an implicit performance function from a 

structural dynamics problem (Example 3) are presented to illustrate the multi-point 

univariate decomposition method.  Comparisons have been made with existing multi-

point FORM/SORM and direct Monte Carlo simulation to evaluate the accuracy and 

efficiency of the new method.  For the multi-point univariate decomposition method, n (= 

3 or 5) uniformly distributed points 

* * * * *
, , , , ,( 1) 2, ( 3) 2, , , , ( 3) 2, ( 1) 2m i m i m i m i m iv n v n v v n v n− − − − + − + −" "  were 

deployed at the vm,i-coordinate of the mth MPP, leading to  function 

evaluations in addition to those required for locating all MPPs.  A barrier method 

developed by Der Kiureghian and Dakessian (1998) and the Hasofer-Lind-Rackwitz-

Fiessler algorithm (Rackwitz, 2001) were employed to find multiple MPPs.  The multi-

[( 1) 1]M n N− +

                                                 
1 The numeric 1 inside the parenthesis is due to a function evaluation .  It should be 

removed if an MPP search algorithm already has the information. 

*
,0 ( )m m mA y= v
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point FORM/SORM also involved Monte Carlo estimates of the failure probability using 

their respective approximate failure domains.  When comparing computational efforts by 

various methods, the number of original performance function evaluations is selected as 

the primary metric in this paper. 

 

5.4.1.  Example 1 – Mathematical Functions with Gaussian Random Variables 

 Consider the performance function 

 ( ) ( ) ( )2
1 1

pg A B X D C X D 2X= + + − + −X , (5.11) 

where  is a bivariate standard Gaussian random vector with the mean 

vector  and the covariance matrix 

2
1 2{ , }TX X=X \∈

2[ ]≡ = ∈X X \µ 0E

2 2[( )( ) ]T ×≡ − − = ∈X X XX X \µ µΣ IE ; A, B, C, D are real-valued deterministic 

parameters; and p is an integer-valued deterministic parameter.  By appropriately 

selecting these deterministic parameters, component reliability problems involving a 

single MPP or multiple MPPs can be constructed.  Three cases involving quadratic, 

cubic, and quartic functions, each containing two MPPs, were studied, as follows. 

 

Case I: A = 5, B = 0.5, C = 1, D = -0.1, p = 2 (Quadratic):  For Case I, the quadratic limit-

state surface has two MPPs:  with the Hasofer-Lind reliability index 

, and  with the index 

1 (2.916,1.036)∗ =u

1 3.094β = 2 ( 2.741,0.966)∗ = −u 2 2.906β = , as shown in Figure 5.3.  

The failure probability was estimated by the proposed univariate method (n = 3), FORM, 

curvature- and point-fitted SORM, and direct Monte Carlo simulation (106 samples).  The 

results considering either one MPP (single-point) or two MPPs (multi-point) and 
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associated computational efforts are listed in Table 5.1.  Compared with the benchmark 

result of the Monte Carlo simulation, all single-point methods generate a large amount of 

error regardless of whether univariate, FORM, and SORM are employed.  This is because 

both MPPs have significant contributions to the failure probability.  Therefore, when two 

MPPs are accounted for, the proposed multi-point univariate method (PF ≅ 0.00308) and 

both variants of the multi-point SORM (PF ≅ 0.00291 and 0.00304) yield highly accurate 

results.  The multi-point FORM (PF ≅ 0.00276), which slightly underpredicts the failure 

probability, is also fairly accurate.  This is because, errors in approximating failure 

domains by various methods occur far away from the origin.  Since the performance 

function is parabolic, no meaningful difference was observed between the results of the 

multi-point univariate method and the multi-point SORM.  However, a comparison of 

computational efforts shows slightly or significantly better efficiency of the proposed 

univariate method when compared with the point-fitted or the curvature-fitted SORM, 

respectively. 

 

Case II: A = 5, B = 0.5, C = 1.5, D = 2, p = 3 (Cubic):  As shown in Figure 5.4, the limit-

state surface for Case II also has two MPPs:  with , and 

 with .  Table 5.2 presents similar comparisons of results 

and computational efforts by various methods stated earlier.  For the univariate method, a 

value of n = 5 was selected to capture higher-order terms of the performance function.  

The results obtained from single-point and multi-point methods show a similar trend as in 

Case I.  However, since the performance function in this case takes on a cubic form, the 

multi-point SORM no longer predicts highly accurate results as in Case I.  Compared 

1 (0,3)∗ =u 1 3β =

2 ( 3.431,0.466)∗ = −u 2 3.462β =
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with the Monte Carlo simulation (106 samples), the multi-point FORM overestimates the 

failure probability by 132 percent and the multi-point SORM underestimates the failure 

probability by 9 percent.  Since the performance function is a univariate function (u 

space) and the first MPP lies on the u2 axis (i.e, no rotation), the single-point univariate 

approximation at that MPP and the multi-point univariate approximation yield the exact 

failure domain.  Hence, both single-point (first MPP) and multi-point univariate methods 

predict the same failure probability estimated by the direct Monte Carlo simulation.  The 

multi-point univariate method is more accurate than either variant of the multi-point 

SORM and requires only a little more computational effort than the multi-point FORM.  

 

Case III: A = 3, B = 2, C = 1, D = -0.1, p = 4 (Quartic):  The final case involves a quartic 

limit-state function that also has two MPPs, as shown in Figure 5.5.  The MPPs are:  

 with , and  with .  The failure 

probability estimates by various methods and their computational efforts are listed in 

Table 5.3.  For the univariate method, a value of n = 5 was selected.  Due to higher 

nonlinearity of the performance function in Case III than that in Cases I and II, the multi-

point FORM/SORM fail to provide an accurate solution.  Compared with the benchmark 

result of the Monte Carlo simulation (10

1 (0.544, 2.881)∗ =u 1 2.932β = 2 ( 0.364, 2.877)∗ = −u 2 2.9β =

6 samples), the errors in calculating the failure 

probability by the multi-point FORM and the multi-point SORM are 139 and 23-26 

percent, respectively.  The multi-point univariate method is more accurate (error ≅ 2 

percent) than the multi-point FORM/SORM with a computational effort slightly higher 

than that required by the multi-point FORM.  The higher accuracy of the univariate 

method is attributed to a higher-order approximation of the failure boundary that permits 
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an accurate representation of the flat region between two MPPs (see Figure 5.5).  The 

underprediction of the multi-point SORM is due to its second-order approximation, 

which cannot capture the flatness of the failure boundary in that region.  Although the 

multi-point FORM approximates that flat region well, it fails to capture the nonlinearity 

of the performance function on other sides of the MPPs, leading to a significant 

overprediction of the failure probability. Additional cases entailing higher-order 

nonlinearity of the performance function can be created in a similar manner to show a 

progressive loss of accuracy by the multi-point FORM/SORM. 

 The results of Cases I-III demonstrate that the multi-point univariate method can 

consistently handle higher-order reliability problems with multiple MPPs.  For all three 

cases, the boundaries of failure domains plotted in Figures 5.3-5.5 indicate that the 

univariate method yields a better approximation than FORM/SORM, especially when the 

performance function is highly nonlinear.  The point-fitted multi-point SORM exhibits a 

similar computational efficiency of the multi-point univariate method, because the 

analysis performed is only two-dimensional.  For higher-dimensional reliability 

problems, the computational effort by the point-fitted SORM should grow larger than that 

by the univariate method.  Nevertheless, the results of the multi-point SORM (curvature- 

or point-fitted), which captures at most a second-order approximation, should be 

carefully interpreted when a reliability problem is highly nonlinear. 

5.4.2  Example 2 – Mathematical Function with Non-Gaussian Random Variables 

 A well-known performance function, originally introduced by Hohenbichler and 

Rackwitz (1981) and subsequently discussed by others (Madsen, 1986; Der Kiureghian, 

et al., 1998), is 
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 ( ) 118 3 2g X= − −X 2X

∈

, (5.12) 

where  is a bivariate random vector with the joint cumulative 

probability distribution function 

2
1 2{ , }TX X=X \

( ) ( ) ( ) ( )
1 2

1 2 1 2 1 2 1 2
1 2

1 exp exp exp , , 0
,

0, otherwise
X X

x x x x x x x x
F x x

⎧ − − − − + − + + ≥⎡ ⎤⎪ ⎣ ⎦= ⎨
⎪⎩

 .  (5.13) 

Due to the symmetry in Equation (5.13) between x1 and x2, there are two distinct 

Rosenblatt transformations (1952) depending on the ordering of variables 1 2{ , }x x  and 

2 1{ , }x x , which lead to mappings 

 ( ) ( )
( ){ }

( ) ( ){ }

1
1 1

1 1 2 1 2 1
2 2 2

1 exp
, , :

1 1 exp 1

u x
T x x u u

u x x

−

−

⎧ = Φ − −⎪≡ → ⎨
= Φ − + − + 1

 
x⎡ ⎤⎪ ⎣ ⎦⎩

  (5.14) 

and 

 ( ) ( )
( ){ }

( ) ( ){ }

1
1 2

2 2 1 1 2 1
2 1 1

1 exp
, , :

1 1 exp 1

u x
T x x u u

u x x

−

−

⎧ = Φ − −⎪≡ → ⎨
= Φ − + − + 2

 
x⎡ ⎤⎪ ⎣ ⎦⎩

 , (5.15) 

respectively, where 2( ) (1 2 )exp( 2)
u

u
−∞

Φ = π −ξ∫ dξ  is the cumulative distribution 

function of a standard Gaussian random variable.  Due to the nonlinearity of 

transformations, the linear limit-state surface in the x space becomes nonlinear functions 

in the u space, as depicted in Figures 5.6(a) and 5.6(b) for transformations T1 and T2, 

respectively.   

 Regardless of the transformation, each limit-state surface possesses two distinct 

MPPs which are:   with 1 (2.782,0.0865)∗ =u 1 2.784β = , and  with 

 for transformation T

2 ( 1.296,3.253)∗ = −u

2 3.501β = 1; and  with , and 1 ( 1.124, 2.399)∗ = −u 1 2.649β =
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2 (3.630,0.142)∗ =u  with 2 3.633β =  for transformation T2.   The univariate 

decomposition method and FORM/SORM entailing single and multiple MPPs were 

applied to obtain estimates of the failure probability, which are presented in Tables 5.4 

and 5.5 for transformations T1 and T2, respectively.  Also listed is the reference solution 

obtained by the direct Monte Carlo simulation involving 106 samples.  For the univariate 

method, a value of n = 3 was selected.  The tabulated results indicate that the failure 

probability estimates based on a single MPP strongly depend on the selected 

transformation and the particular MPP that is found.  If an optimization algorithm can 

find only one (e.g., the second MPP) of these two MPPs, results based on that MPP may 

contain significant errors regardless of the reliability method employed.  The multi-point 

FORM using the transformation T1 yields an excellent result, but also produces an 

erroneous result when the transformation T2 is chosen.  In contrast, the multi-point 

univariate method and the multi-point curvature-fitted SORM yield excellent estimates of 

the failure probability regardless of the transformation invoked.  The maximum errors by 

the multi-point univariate method, multi-point FORM, and multi-point SORM are 1.7, 

40.9, and 2.7 percent, respectively.  Although the univariate method and SORM have 

comparable accuracies, the multi-point univariate method is more computationally 

efficient than the multi-point SORM. 

 

5.4.3  Example 3 – Seismic Dynamics of a Ten-Story Building-TMD System 

 In this example, consider a 10-story shear building subjected to seismic ground 

motion with a tuned mass damper (TMD) placed on the roof, as shown in Figure 5.7.  A 

similar problem has been discussed by Der Kiureghian and Dakessian (1998) and Gupta 
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and Manohar (2004).  The building has random floor masses  and random 

story stiffness .   The TMD has a random mass M

,  1, ,10iM i = "

,  1, ,10iK i = " 0 and random stiffness 

K0.  The combined system has random modal damping ratios ,  0, ,10i iζ = " .  The input 

motion is defined by a pseudo-acceleration response spectrum ( ) ( ) ( ),A T SH a Tζ = ζ , 

where T is the period, S = 0.61 is a scale factor, ( )H ζ  is a damping–dependent 

correction factor defined by the Applied Technology Council (US Army Corps 

Engineering, 1995), and  is the pseudo-acceleration response spectrum shape for a 5 

percent damping, as shown in Figure 5.8.  The TMD is effective in reducing the dynamic 

response of the building over a narrow band of frequencies, providing best results when 

its natural frequency 

( )a T

0 0k mω = 0  is perfectly tuned to the fundamental frequency of the 

building.  In reality, due to uncertainties in mass, stiffness, and damping properties, 

perfect tuning between the TMD and the building may not occur.  As a result, the TMD 

can be over-tuned or under-tuned, leading to two distinct MPPs when conducting 

reliability analysis of a combined building-TMD system. 

 For the present reliability analysis, consider the limit-state function  

 ( ) ( )0 baseg V V= −X X , (5.16) 

where  is a random vector 

consisting of 33 independent random variables, 

{ } 33
0 1 10 0 1 10 0 1 10, , , , , , , , , , , TM M M K K K= ζ ζX " " " ζ ∈\

( )baseV X  is the base shear response of 

the building which is an implicit function of X, and 0 1000 kipV =  is an allowable 

threshold.  Each of these random variable is lognormally distributed with respective 

means and coefficients of variations listed in Table 5.6.    The base shear is computed by 
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combining modal responses of the 11-DOF building-TMD system using the CQC rule 

(Clough, 1993).  Each realization of X involves an eigenvalue analysis of the system, the 

computation of the modal contributions to the base shear, and their combination 

according to the CQC rule. 

 Starting from the mean input, the first MPP was found with a value of the 

Hasofer-Lind reliability index 1 1.137β =  (over-tuned).  The second MPP was located 

with the corresponding index 2 1.846β =  (under-tuned).   Table 5.7 summarizes various 

estimates of the failure probability, based on single- and multi-point univariate 

decomposition method and FORM/SORM.  These results are compared with the solution 

using the direct Monte Carlo simulation employing 5000 samples.  For the univariate 

method, a value of n = 3 was selected.  Failure probability estimates by all methods that 

are based on a single MPP improve when both MPPs are considered.  Both the multi-

point SORM (curvature-fitted) and multi-point univariate method provide very accurate 

results.  However, by comparing the number of function evaluations, also listed in Table 

5.7, the multi-point univariate decomposition method is more computationally efficient 

than the multi-point SORM. 
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Table 5.1  Failure probability for quadratic function in Example 1 (Case I) 
 
 
 
 
MPP 

 
 
Reliability Method 

 
Failure  
probability 

Number of  
function 
evaluations(a)

Single-point univariate method 0.00202 45 
Single-point FORM 0.00183 41 
Single-point SORM (curvature-fitted) 0.00195 186 

1st MPP  
(u1

*) 

Single-point SORM (point-fitted) 0.00197 49 
Single-point univariate method 0.00113 50 
Single-point FORM 0.000987 46 
Single-point SORM (curvature-fitted) 0.00106 191 

2nd MPP  
(u2

*) 

Single-point SORM (point-fitted) 0.00107 54 
Multi-point univariate method 0.00308 95 
Multi-point FORM 0.00276 87 
Multi-point SORM (curvature-fitted) 0.00291 377 

Both MPPs  
(u1

* and u2
*) 

Multi-point SORM (point-fitted) 0.00304 103 
 Direct Monte Carlo simulation 0.00304 1,000,000 
(a) Total number of times the original performance function is calculated. 
 

 
 
 

Table 5.2  Failure probability for cubic function in Example 1 (Case II) 
 
 
 
 
MPP 

 
 
Reliability Method 

 
Failure  
probability 

Number of  
function 
evaluations(a)

Single-point univariate method 0.000721 29 
Single-point FORM 0.00135 21 
Single-point SORM (curvature-fitted) 0.000410 159 

1st MPP  
(u1

*) 

Single-point SORM (point-fitted) 0.000410 29 
Single-point univariate method 0.000276 69 
Single-point FORM 0.000268 61 
Single-point SORM (curvature-fitted) 0.000277 437 

2nd MPP  
(u2

*) 

Single-point SORM (point-fitted) 0.000279 69 
Multi-point univariate method 0.000721 98 
Multi-point FORM 0.00167 82 
Multi-point SORM (curvature-fitted) 0.000646 596 

Both MPPs  
(u1

* and u2
*) 

Multi-point SORM (point-fitted) 0.000651 98 
 Direct Monte Carlo simulation 0.000721 1,000,000 
(a) Total number of times the original performance function is calculated. 
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Table 5.3  Failure probability for quartic function in Example 1 (Case III) 
 
 
 
 
MPP 

 
 
Reliability Method 

 
Failure  
probability 

Number of  
function 
evaluations(a)

Single-point univariate method 0.000954 154 
Single-point FORM 0.00169 146 
Single-point SORM (curvature-fitted) 0.000552 439 

1st MPP  
(u1

*) 

Single-point SORM (point-fitted) 0.000519 154 
Single-point univariate method 0.000938 134 
Single-point FORM 0.000186 126 
Single-point SORM (curvature-fitted) 0.000564 259 

2nd MPP  
(u2

*) 

Single-point SORM (point-fitted) 0.000527 134 
Multi-point univariate method 0.00101 288 
Multi-point FORM 0.00246 272 
Multi-point SORM (curvature-fitted) 0.000810 698 

Both MPPs  
(u1

* and u2
*) 

Multi-point SORM (point-fitted) 0.000764 288 
 Direct Monte Carlo simulation 0.00103 1,000,000 
(a) Total number of times the original performance function is calculated. 
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Table 5.4  Failure probability for Example 2 (Transformation T1) 
 

 
 
 
MPP 

 
 
Reliability Method 

 
Failure  
probability 

Number of  
function 
evaluations(a)

Single-point univariate method 0.00285 45 
Single-point FORM 0.00269 41 

1st MPP  
(u1

*) 
Single-point SORM 0.00280 182 
Single-point univariate method 0.000157 105 
Single-point FORM 0.000232 101 

2nd MPP  
(u2

*) 
Single-point SORM 0.000145 244 
Multi-point univariate method 0.00301 150 
Multi-point FORM 0.00290 142 

Both MPPs  
(u1

* and u2
*) 

Multi-point SORM 0.00292 426 
 Direct Monte Carlo simulation 0.00296 1,000,000 
(a) Total number of times the original performance function is calculated. 

 
 
 
 
 

Table 5.5  Failure probability for Example 2 (Transformation T2) 
 

 
 
 
MPP 

 
 
Reliability Method 

 
Failure  
probability 

Number of  
function 
evaluations(a)

Single-point univariate method 0.00281 85 
Single-point FORM 0.00404 81 

1st MPP  
(u1

*) 
Single-point SORM 0.00273 224 
Single-point univariate method 0.000180 55 
Single-point FORM 0.000140 51 

2nd MPP  
(u2

*) 
Single-point SORM 0.000150 196 
Multi-point univariate method 0.00299 140 
Multi-point FORM 0.00417 132 

Both MPPs  
(u1

* and u2
*) 

Multi-point SORM 0.00288 420 
 Direct Monte Carlo simulation 0.00296 1,000,000 
(a) Total number of times the original performance function is calculated. 
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Table 5.6  Statistical properties of random input for Example 3 
 
 

Random 
variable 

 
Mean 

Coefficient 
of variation 

Probability 
distribution 

M1,⋅⋅⋅,M10 193 kip/g 0.2 Lognormal 

K1,⋅⋅⋅,K10 1200 kip/in 0.2 Lognormal 

M0 158 kip/g 0.2 Lognormal 

K0 22 kip/in 0.2 Lognormal 

ζ0,⋅⋅⋅, ζ10 0.05 0.3 Lognormal 
 
 
 
 
 

Table 5.7  Failure probability for Example 3 
 

 
 
 
MPP 

 
 
Reliability Method 

 
Failure  
probability 

Number of  
function 
evaluations(a)

Single-point univariate method 0.1422 536 
Single-point FORM 0.1278 470 

1st MPP  
(u1

*) 
Single-point SORM 0.1401 1593 
Single-point univariate method 0.0314 737 
Single-point FORM 0.0324 671 

2nd MPP  
(u2

*) 
Single-point SORM 0.0295 1794 
Multi-point univariate method 0.163 1273 
Multi-point FORM 0.151 1141 

Both MPPs  
(u1

* and u2
*) 

Multi-point SORM 0.161 3387 
 Direct Monte Carlo simulation 0.163 5000 
(a) Total number of times the original performance function is calculated. 
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Figure 5.1  A performance function with multiple most probable points 
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Figure 5.2  Flowchart of the multi-point univariate decomposition method 
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Figure 5.3  Quadratic limit-state surface            Figure 5.4  Cubic limit-state surface 
                         in Case I (Example 1)                                        in Case II (Example 1) 
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Figure 5.5 Quartic limit-state surface in Case III (Example 1) 
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Figure 5.6  Limit-state surface of Example 2; (a) transformation T1; (b) 
transformation T2
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TMD: M0, K0, ζ0 

Building: 

Floor mass: Mi, 

Story stiffness: Ki 

Modal damping ratio: ζi 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

Figure 5.7  A ten-story building-TMD system (Example 3) 
 

10 -3 10 -2 10 -1 10 0 10 1

Period T, s

10 -2

10 -1

10 0

10 1

N
or

m
al

iz
ed

 a
cc

el
er

at
io

n 
[a

(T
)/g

]

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.8  Normalized pseudo-acceleration response spectrum  
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CHAPTER 6 

 RELIABILITY-BASED DESIGN OPTIMIZATION BY 

UNIVARIATE DECOMPOSITION  

 This chapter presents a univariate decomposition method for reliability-based 

design optimization of mechanical systems.  The method involves: (1) higher-order, 

univariate approximation of performance functions for reliability analysis; (2) analytical 

sensitivities of failure probability with respect to design variables; (3) standard gradient-

based optimization algorithms.  The chapter begins with a brief exposition of the RBDO 

formulation in Section 6.1.  Section 6.2 briefly summarizes the MPP-based univariate 

decomposition method for reliability analysis, presents new sensitivity equations for 

design variables, and design optimization.  The computational flow and effort are 

described in Section 6.3.  Two sets of examples, each involving mathematical functions 

and structural/solid-mechanics problems, illustrate the sensitivity analysis and RBDO 

method developed in section 6.4.  Comparisons have been made with alternative 

FORM/SORM and simulation-based methods to evaluate the accuracy and computational 

efficiency of the new RBDO method.  Finally, Section 6.5 provides conclusions and 

future outlook. 

 

6.1 Reliability-Based Design Optimization

6.1.1 Generalized RBDO Problem 

             The mathematical formulation of a general stochastic optimization problem P1 

involving a single objective function and 1 K≤ < ∞  constraint functions entails the 

statement 
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[ ]0 0

1 ,

min   ( ) ( ; )

: subject to ( ) ( ) ;   1, ,  

M

k F k k

l u

c f

P c P p k

∈ ⊆

⎧ ≡
⎪
⎪

⎡ ⎤≡ ∈Ω ≤ =⎨ ⎣ ⎦
⎪ ≤ ≤⎪
⎩

d
d X d

d X d

d d d

B
D

K

∈

, (6.1) 

in which  is an M-dimensional design vector with non-empty 

closed set 

1{ , , }T
Md d=d D

M⊆D ;  is an N-dimensional random vector with 

joint probability density function  defined on a probability space (Ω, F, P) , where 

Ω is the sample space, F is the σ-algebra, and P is the probability measure; 

 is the kth failure domain that may depend on d; and 

1{ , , }T
NX X=X N∈

K

( )fX x

, ( ) ,  1, ,F k kΩ ⊆ Ω =d

0 1,  1, ,kp k≤ ≤ = K  are target failure probabilities, and  and  are lower and 

upper bounds of d.   The design vector d can be deterministic parameters of objective and 

constraint functions and/or distribution parameters of X (e.g., mean of X).  The objective 

function c

ld ud

0 is obtained by applying an appropriate risk functional  on a 

random state function 

: f →XB

0 ( ; )f X d .  For example, a common characterization of c0, obtained 

by applying the expectation operator , is: f →XE  [ ]0 0( ) ( ; )c f=d XE d , which involves 

statistical moment analysis.  In contrast, the constraint functions ck, depicted in Equation 

6.1, requires reliability analysis.  For component reliability analysis, the failure domain 

, where  is a single performance function for each 

constraint.  Similar performance functions can be defined for system reliability analysis.  

Equation (6.1) defines a generic single-objective RBDO problem. 

, { : ( ; ) 0}F k kgΩ = ≤x x d ( ; )kg x d
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6.1.2 Special RBDO Problem 

 In engineering applications, RBDO is commonly formulated assuming a 

deterministic state function in the objective function and component failure probabilities 

in constraint functions, leading to the problem P2 with the mathematical statement 

 , (6.2) ( )
0

2

min   ( )

: subject to ( ) ; 0 ;   1, ,  
M

k k k

l u

c

P c P g p k
∈ ⊆

⎧
⎪⎪ ≡ < ≤ =⎡ ⎤⎨ ⎣ ⎦
⎪ ≤ ≤⎪⎩

d
d

d X d

d d d

D R

K

which is a special case of Problem P1.  Solving Problem P2 requires only component 

reliability analysis in evaluating constraints, and is the focus of the current research.  The 

scope of Problem P2 can be expanded by including constraints involving system-

reliability analysis, but they were not considered in this study.   The optimal solution is 

denoted by * M∈d . 

 

6.2 Univariate Decomposition Method

 Consider a continuous, differentiable, real-valued performance function 

 that depends on  and .  If 

 is the standard Gaussian space, let  denote the MPP or beta 

point, which is the closest point on the limit-state surface to the origin.  The MPP has a 

distance β

( ; ) 0kg =x d 1{ , , }T
Nx x= ∈x N M

N∈

1{ , , }T
Md d= ∈d

1{ , , }T
Nu u=u *

ku

k, which is commonly referred to as the Hasofer-Lind reliability index 

(Madsen, et al., 1986), is determined by a standard nonlinear constrained optimization.  

Construct an orthogonal matrix N N
k

×∈R  whose Nth column is * *
k k H≡ βuα L , i.e., 

*
,1k k k

⎡= ⎣R R α ⎤⎦ , where 1
,1

N N
k

× −∈R  satisfies *
,1

T
k k

1 1N× −= ∈Rα 0 .  The matrix ,1kR  can 
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be obtained, for example, by Gram-Schmidt orthogonalization.  For an orthogonal 

transformation , let  represent the rotated Gaussian 

space with the associated MPP 

k k=u R v ,1 ,{ , , }T
k k k Nv v=v N∈

{ } {* * * *
,1 , 1 ,, , , 0, ,0,

T T
k k k N k N kv v v− }= = βv .  The 

transformed limit states ( ; ) 0kh =u d  or ( ; ) 0k ky =v d  are therefore the maps of the 

original performance function ( ; ) 0kg =x d  in the standard Gaussian space (u space) and 

the rotated Gaussian space (vk space), respectively, as shown in Figure 6.1 for N = 2.  

 

6.2.1 Reliability Analysis 

6.2.1.1  MPP-based Univariate Decomposition of Performance Function 

 At the MPP, consider a univariate approximation of , denoted by  ( ; )k ky v d

*
,1 ,1 ,1 , ,

1

ˆ ˆ( ; ) ( , , ; ) (0, ,0, ,0, , ; ) ( 1) ( ; )
N

k k k k k N k k i k k k
i

y y v v y v N y
=

≡ = β − −∑v d d d v d , (6.3) 

where  and *( ; ) (0, ,0, ; )k k k ky y≡ βv d d , , ,( ; ) (0, ,0, ,0, , ; );  1,k i k i k k i ky v y v i N≡ β =d d .  

From author’s past work (Rahman and Wei, 2006), it can be shown that the univariate 

approximation  leads to the residual error , which 

includes contributions from terms of dimension two and higher.  For a sufficiently 

smooth  with a convergent Taylor series, the coefficients associated with higher-

dimensional terms are usually much smaller than that with one-dimensional terms.  As 

such, higher-dimensional terms contribute less to the function, and therefore, can be 

neglected.  Nevertheless, Equation (6.3) includes all higher-order univariate terms.  In 

contrast, FORM and SORM also entail univariate approximations, but retain only linear 

and quadratic univariate terms, respectively.  Hence, Equation (6.3) should provide in 

,1ˆ ( ; )k ky v d ,1ˆ( ; ) ( ; )k k k ky y−v d v d

( )k ky v
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general a higher-order approximation of the performance function than those by 

commonly employed FORM/SORM. 

 

6.2.1.2  Failure Probability Analysis for Constraint Evaluations 

 The univariate approximation in Equation (6.3) can be rewritten as 

  ,  (6.4) 
1

*
,1 , , , ,

1

ˆ ( ; ) ( ; ) ( ; ) ( 1) ( ; )
N

k k k N k N k i k i k k
i

y y v y v N y
−

=

= + − −∑v d d d v d

where, due to the rotational transformation of the coordinates (see Figure 6.1), the 

univariate component function  in Equations (6.3) or (6.4) is expected to be a 

linear or a weakly nonlinear function of v

, ,( ;k N k Ny v d )

)N.   In fact,  is linear with respect to 

v

, ,( ;k N k Ny v d

k,N in classical FORM/SORM approximations of a performance function in the vk space.   

Hence, consider a linear and quadratic approximation:  

and , where coefficients , 

, , ,0 ,1 ,( ; ) ( ) ( )k N k N k k k Ny v b b v= +d d d

2
, , ,0 ,1 , ,2 ,( ; ) ( ) ( ) ( )k N k N k k k N k k Ny v b b v b v= + +d d d d ,0kb ∈ ,1kb ∈  

and  (non-zero) are obtained by least-squares approximations from exact or 

numerically simulated responses 

,2kb ∈

{ }(1) ( )
, , , ,( ), , ( n

k N k N k N k Ny v y v )  at n sample points along 

the vk,N coordinate.  Applying the linear and quadratic approximation respectively and 

noting that Vk,N follows standard Gaussian distribution, the component failure probability 

embedded in the kth constraint can be expressed by 

( )

1
*

,0 , ,
1

,1

( 1) ( ; ) ( ) ( ; )
( ) ; 0

( )

N

k k k k i k i
i

k k k
k

N y b y V
c P y

b

−

=

⎡ ⎤⎛ ⎞− − −⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟= < ≅ Φ⎡ ⎤⎣ ⎦ ⎢ ⎥⎜ ⎟

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑v d d d
d V d

d
E ,  (6.5a) 

and 
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where ( ) ( ) ( )21 2 exp 2
z

z
−∞

Φ = π −ξ∫ dξ

)1)
N

k k k i k i k k
i

B b y V N y
−

=

≡ + − −∑V d d d v d {

 is the cumulative distribution function of a 

standard Gaussian random variable. In Equation (6.5b) 

, where ( ) ( ) ( ) (
1

*
,0 , ,

1
, ; ( ; },1 , 1, ,

T
k k k NV V −=V is an 

N-1-dimensional standard Gaussian vector.  Note that Equation (6.5) provides higher-

order estimates of failure probability than that by FORM/SORM if univariate component 

functions  are approximated by higher than second-order terms.  By 

integrating with respect to 

, ,( ),  1, 1k i k iy v i N= −

1
,1 , 1{ , , }T N

k k k Nv v −
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and 
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, 

 (6.6b) 

where ( ) ( )2
, , , ,( ) ( ) 1 2 exp 2k i k i k i k iv d v dv vφ ≡ Φ = π −   is the probability density function 

of a standard Gaussian random variable. 

 

6.2.2 Design Sensitivity Analysis 

 In gradient-based optimization algorithms, derivatives of both objective and 

constraint functions with respect to each design variable are required.  For the RBDO 

problem P2, calculating such derivatives of the objective function is trivial.  However, the 

formulation of gradients for a constraint function is dependent on how the underlying 

reliability analysis is performed.  A new analytically derived sensitivity analysis of 

general constraint functions ( );  1,kc k K=d  was conducted as follows. 

 The integrand of the multi-dimensional integration (Equation (6.6)) depends on 

 and , each of which in turn depends on design d.  By applying the chain rule 

in Equation (6.6), the partial derivative of the constraint function  with respect to 

design variable d

( )kβ d ( )kv d

( )kc d

i is 

 
1

,

1 ,

( ) ( ) ( )N
k jk k k k

ji k i k j

vc c c
d d v

−

= id
∂∂ ∂ ∂β ∂

= +
∂ ∂β ∂ ∂ ∂∑d d d

, (6.7) 

which involves four partial derivatives described as follows.  
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6.2.2.1  Partial Derivative of ck(d) with Respect to βk

 Using the univariate approximation of  in Equation (6.4) and linear 

approximation of the component function , 

( ; )k ky v d

, ,( ;k N k Ny v d )

( ) ( )
*

*

*

1
*

,0 ,1 , , ,
1

( ); ;

                         ( ) ( ) ( ; ) ( 1) ( ; )

k k

k k

k k k k k

k k

N

k k k N k i k i k k
ik

y y

b b v y v N y
−

=

∂ β ∂
=

∂β ∂β

∂ ⎡ ⎤
≅ + + − −⎢ ⎥∂β ⎣ ⎦

∑

v =v

v =v
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 ,   (6.8) 

which yields 
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* 1
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k k k

k k k k i k k
ik k

y
b b y N y
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∂ β ∂ ⎡ ⎤
≅ + β + − −⎢ ⎥∂β ∂β ⎣ ⎦

∑
v d

d d d v d )

)

)

.    (6.9) 

For a variation in βk, coefficients , , and  employed in 

representing the component function  is not expected to change significantly.  

In addition, the term  in Equation (6.4) is a constant, which does not 

change with β

,0 ( )kb d ,1( )kb d , (0; )k iy d

, ,( ;k N k Ny v d

*( 1) ( ;k kN y− v d

k in Equation (6.9).  Hence, it can be assumed that 

,0 ,1 , (0; ) ( ; ) 0k k k k k i k k kb b y y ∗∂ ∂β = ∂ ∂β = ∂ ∂β = ∂ ∂β =d v d  in Equation (6.9), yielding 
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v d
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For quadratic approximation of the component function , with the 

assumption 

, ,( ;k N k Ny v d )

,0 ,1 ,2 , (0; ) ( ; ) 0k k k k k k k i k k kb b b y y ∗∂ ∂β = ∂ ∂β = ∂ ∂β = ∂ ∂β = ∂ ∂β =d v d , 

Equation (6.10a) is also satisfied.  Further derivation leads to 
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Taking partial derivative of Equation (6.6) with respect to βk, 
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which when combined with Equation (6.10), yields 
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6.2.2.2  Partial Derivative of ck(d) with Respect to vk,j

 The partial derivative of failure probability defined by constraint function  

with respect to the realization v

( )kc d

k,j of the ith rotated Gaussian random variable Vk,j is  

 

( )

1

1 , ,*
,0 , ,

,1

, ,1 ,1

( )

( ; )
( 1) ( ); ( ) ( ; )

( )
( ) ( )

( 1
                          

N

k

N k j k j
k k k k k i k i

k jk i

k j k k

f

y v
N y b y v vc

v b b

N

−

−

=

⎡ ∂⎛ ⎞⎛ ⎞
− β − −⎢ ⎜ ⎟⎜ ⎟ ∂∂ ⎢ ⎜ ⎟⎜ ⎟≅ φ −⎢ ⎜ ⎟∂ ⎜ ⎟

⎢ ⎜ ⎟⎜ ⎟
⎝ ⎠⎢ ⎝ ⎠⎣

−
−Φ

⌠
⎮
⎮
⎮
⎮
⎮⎮
⌡

∑

v

d
v d d d

d
d d

( )
1

*
,0 , , 1

1
, ,

1,1

( )

) ( ); ( ) ( ; )
( )

( )

k

N

k k k k k i k i N
i

k j k i k i
ik

f

y b y v
v v d

b

−

−
=

=

⎤
⎥⎛ ⎞β − − ⎥⎜ ⎟
⎥⎜ ⎟ φ
⎥⎜ ⎟
⎥⎜ ⎟

⎝ ⎠ ⎥
⎥⎦

∑
∏

v

v d d d

d , .v

    

  (6.13a) 

and 



www.manaraa.com

 174

( )
( )

( )
1

2
,1 ,1 ,2 ,

2
, ,2 ,1 ,2

( )

;
( ) ( ) 4 ( ) ;( )

2 ( ) ( ) 4 ( ) ;

                          

N

k

k

k k k k k jk

k j k k k k

f

B
b b b B vc

v b b b B

−

⎡ ⎛ ⎞∂
⎢ ⎜ ⎟⎛ ⎞− + − ∂⎢∂ ⎜ ⎟⎜ ⎟≅ φ −⎢ ⎜ ⎟⎜ ⎟∂ ⎜ ⎟ −⎢ ⎜ ⎟⎝ ⎠⎢ ⎜ ⎟

⎝ ⎠⎣

−
−Φ

⌠
⎮
⎮
⎮
⎮
⎮
⎮
⌡

v

V d
d d d V dd

d d d V d

( )

( )
( )

2 1,1 ,1 ,2
, , ,

1,2

( )

2
,1 ,1 ,2 ,

2
,2 ,1 ,2

( ) ( ) 4 ( ) ;
( )

2 ( )

;
( ) ( ) 4 ( ) ;

            
2 ( ) ( ) 4 ( )

k

Nk k k k
k j k i k i

ik

f

k

k k k k k j

k k k

b b b B
v v dv

b

B
b b b B v

b b b B

−

=

⎤
⎥⎛ ⎞+ − ⎥⎜ ⎟ φ⎥⎜ ⎟⎜ ⎟ ⎥⎝ ⎠ ⎥
⎦

∂
⎛ ⎞− − − ∂⎜ ⎟− φ⎜ ⎟⎜ ⎟ −⎝ ⎠

∏

v

d d d V d

d

V d
d d d V d

d d d ( )

( )

1
( )

2
,1 ,1 ,2

, ,
,2

( )

;

( ) ( ) 4 ( ) ;
                          ( )

2 ( )

N

k

k

k

f

k k k k
k j k i

k

f

b b b B
v v dv

b

−

⎡ ⎛ ⎞
⎢ ⎜ ⎟
⎢ ⎜ ⎟
⎢ ⎜ ⎟
⎢ ⎜ ⎟
⎢ ⎜ ⎟

⎝ ⎠⎣

⎤
⎥⎛ ⎞− − − ⎥⎜ ⎟−Φ φ⎥⎜ ⎟⎜ ⎟ ⎥⎝ ⎠ ⎥
⎦

⌠
⎮
⎮
⎮
⎮
⎮
⎮
⌡

v

v

V d

d d d V d

d

1

,
1

N

k i
i

−

=
∏

. 

(6.13b) 

 

6.2.2.3  Partial Derivatives of βk and vk,j with Respect to di 

 Of the two remaining gradients, the partial derivative of reliability index βk with 

respect to design variable di is 
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where { 1, , T
k k k Nh h u h u= ∂ ∂ ∂ ∂∇ } , ⋅  is the  norm, and the vector derivative 2L

{ 1 , , T
i i Nd u d u d∂ ∂ = ∂ ∂ ∂ ∂u }i  is obtained from the x-u transformation.  In Equation 
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(6.14),  represents a vector of structural response sensitivities, is problem 

dependent, and is calculated either analytically or numerically by a finite-difference 

approximation.  Finally, the partial derivative 

( ; )T
kh u d∇

,k j iv d∂ ∂  included in Equation (6.7) is 

obtained from the x-vk transformation.  Both x-u and x-vk transformations depend on the 

probability distribution of X and hence on a specific RBDO problem to be solved. 

 

6.2.3  Univariate Numerical Integration for Reliability and Sensitivity Analyses 

 The expressions of constraint function in Equation (6.6) and their partial 

derivatives in Equations (6.12) and (6.13) involve multivariate integrations over 1N− .  A 

generic evaluation of these integrals requires calculating 1

1
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where  is the multivariate part of the integrand and depends on how 

univariate component functions 
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, ,( ),  1, 1k i k iy v i N= −  are constructed, and  is 

the remaining univariate part of the integrand.  The exact calculation of this integral is not 

possible in general.  Numerical integration is not efficient as  is a multivariate 

function and becomes impractical when the dimension exceeds three or four.  

:q

( )kf v

 In reference to Equation (6.3), consider again a univariate approximation of 
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where  are univariate component functions and 
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yielding 
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which involves a product of N-1 univariate integrals.  Using Equation (6.17) with 

appropriately defined ( )f v  in Equations (6.6), (6.12), and (6.13), the failure probability 

by linear approximation of component function and their derivatives 

becomes 
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and 
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 (6.20) 

respectively.  The univariate integration involved in each of Equations (6.18), (6.19), and 

(6.20) can be easily evaluated by standard one-dimensional Gauss-Hermite numerical 

quadrature.  The failure probability by quadratic approximation of component function 

and their derivatives can be evaluated by the similar forms.  Equation (6.7) 

with partial derivatives formulated in Equations (6.19) and (6.20) provide design 

sensitivities for a gradient-based design optimization. 

, ,( ;k N k Ny v d )
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6.3  Computational Flow and Effort 

 In summary, the overall process for solving the RBDO problem P2 can be 

described by the following steps: 

(1) Define an initial design with d = d0.  Use the final result of mean- or other 

relevant reference-point-based optimization if available. 

(2) Evaluate both objective and constraint functions for the current design vector.  

For constraint functions, use the proposed univariate decomposition method 

(Equation (6.18)) for reliability analysis. 

(3) Evaluate gradients of both objective and constraint functions for the current 

design vector.  For gradients constraint functions, use the proposed univariate 

decomposition method (Equations (6.7), (6.19), and (6.20)) for design 

sensitivity analysis. 

(4) Perform deterministic optimization to solve Equation (6.2) by a selected 

gradient-based algorithm. 

(5) Check for the convergence of the objective function and design vector.  If the 

convergence is reached, stop.  If not, update the design vector to find the next 

design vector and repeat steps 2 through 4. 

Figure 6.2 depicts the flowchart of the proposed RBDO process.  New methods were 

developed in the shaded areas. 

For determining computational effort, consider 

; , , ,( ; ) (0, ,0, ,0, ,0; )k i k i k k iy v y v≡d d 1,i N= , for which n function values 

; ( ) ( )
, , ,( ; ) (0, ,0, ,0, ,0; )j j

k i k i k iy v y v≡d d 1, ,j n=  are required to be evaluated at 

integration points  to perform an n-order Gauss-Hermite quadrature for ith ( )
, ,

j
k i k iv v=
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integration in Equations (6.18)-(6.20).  The same procedure is repeated for N-1 univariate 

component functions for each constraint, i.e., for all  and for K 

constraint functions, i.e., for all 

, ,( ; ),  1, ,k i k iy v i N=d

( ; ),  1, ,k ky k K=v d .  Therefore, the total cost of the 

proposed univariate method entails a maximum of  function evaluations.   Note that 

the above cost is in addition to any function evaluations required for locating the MPP in 

each constraint.  

nNK

 Design sensitivities using FORM/SORM approximations of failure probability in 

evaluating constraints are described in Appendix D.   For linear approximations of  

at MPP, Equation (6.7) can be further simplified to degenerate to FORM sensitivity 

equations. 

( )kc d

 

6.4  Numerical Examples

 Two example sets, one involving two design sensitivity problems, and the other 

involving four RBDO problems, are presented to illustrate the proposed univariate 

decomposition method.  Constraints associated with both mathematical functions 

(Examples 1 and 3) and structural/solid-mechanics (Examples 2, 4, 5, and 6) problems 

were employed.  Whenever possible, comparisons have been made with the 

FORM/SORM, and direct Monte Carlo simulation to evaluate the accuracy and 

efficiency of the new method.  In solving RBDO problems (Examples 4-6), all 

approximate methods employ the nested double loop for design and reliability iterations.  

No single-loop FORM-based methods, although available in the current literature, were 

included, as the objective was to determine how the accuracy and efficiency of a 

reliability analysis influence the optimization process.  All structural sensitivities 
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( ) were obtained by the finite-difference method involving 1 percent 

perturbations. 

( ; )T
kh u d∇

 To obtain linear approximation of , ,( ; );  1,k N k Ny v k K=d , n (= 5 or 7) sample 

points * * * * *
, , , , ,( 1) 2, ( 3) 2, , , , ( 3) 2, ( 1) 2k N k N k N k N k Nv n v n v v n v n− − − − + − + −  

were deployed along the vk,N-coordinate.  The same value of n was employed as the order 

of Gauss-Hermite quadratures in Equations (6.6), (6.12), or (6.13) of the proposed 

univariate method.  Hence, the total number of function evaluations required by the 

univariate method, in addition to those required for locating the MPP, is ( 1)n NK− .  

When comparing computational efforts by various RBDO methods, the number of 

original performance function evaluations was chosen as the primary metric in this work. 

The optimization algorithms employed were sequential quardratic programming 

in Example 3, 4, and 6; and sequential linear programming in Example 5.   

 

6.4.1  Example Set I – Design Sensitivity Analysis 

6.4.1.1  Example 1 – Elementary Mathematical Functions 

 Consider two constraint functions [ ]( ) ( ; ) 0k kc P g= <d X d ; , where the 

cubic and quartic performance functions are respectively expressed by  

1,2k =

( ) ( )3
1 1 1 2 2 1

0.025 2 33( ; ) 2.2257 ( ) ( ) 20 ( ) ( )
27 140

g X d X d X= − + − + −X d 1 2 2d X d    (6.21) 

and 

( ) ( )4
2 1 1 2 1 1 1

5 1 33( ; ) ( ) ( ) 20 ( ) ( )
2 216 140

g X d X d X d= + + − − −X d 2 2X d ,         (6.22) 
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in which,   is a bivariate, independent, Gaussian random vector 

with means µ

1 1 2 2( ) { ( ), ( )}TX d X d=X d

i = 10 and standard deviations σi = 3; i =1,2.  From an MPP search, 

 and *
1 {0,2.2257}T=v *

1 1 2.2257β = =v  for the cubic function and  and *
2 {0,2.5}T=v

*
2 2 2.5β = =v  for the quartic function.  For the univariate method, a value of n = 5 was 

selected, resulting 9 function evaluations.  The design vector is  

for both functions. 

1 2{ , } {10,10}T T= µ µ =d

           Table 6.1 presents partial derivatives 1( ) ;  1, 2ic d i∂ ∂ =d  and 2 ( ) ;  1, 2ic d i∂ ∂ =d , 

calculated by FORM/SORM, proposed univariate decomposition method, and Monte 

Carlo simulation using 106 samples.  The univariate method yields very accurate 

estimates of gradients of both constraints with a maximum error of less than 1 percent 

when compared with simulation results.  In contrast, existing FORM/SORM for this 

particular example contains maximum errors of 64 and 113 percent for cubic and quartic 

performance functions, respectively.  The SORM results are the same as the FORM 

results, indicating that there is no improvement over FORM for problems involving 

inflection point (cubic function) or high nonlinearity (quartic function). 

 

6.4.1.2  Example 2 – Ten-Bar Truss Structure 

 A ten-bar, linear-elastic, truss structure, shown in Figure 6.3, was studied in this 

example to examine the accuracy and efficiency of the proposed univariate method for 

calculating gradients.  The Young’s modulus of the material is 107 psi.  Two concentrated 

forces of 105 lb are applied at nodes 2 and 3.  The cross-sectional area  for each bar 

is independent, follows normal distribution, and has means µ

( )iX d

i = 2.5 in2 and standard 
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deviation σi = 0.5 in2; .  According to the loading condition, the maximum 

displacement [( ] occurs at node 3, where a permissible 

displacement is limited to 18 in.  Hence, the constraint function is 

. 

1, ,10i =

(3 1 1 10 10( ), , ( )v X d X d )

( )3 1 1 10 1( ) 18 ( ), , ( ) 0c P v X d X d= − <⎡ ⎤⎣ ⎦d

           From an MPP search, the reliability index is * 1.3642β = =v .  Table 6.2 lists ten 

gradients of the failure probability of the truss, i.e., ( ) ;  1, ,10ic d i∂ ∂ =d , which were 

calculated using the proposed univariate method (linear and quadratic approximation), 

FORM, SORM, and direct Monte Carlo simulation (106 samples).   For the univariate 

method, a value of n = 7 was selected.  As can be seen from Table 6.2, both SORM and 

the univariate method predict derivatives of the failure probability more accurately than 

FORM.  This is because univariate methods and SORM are able to approximate the 

performance function embedded in the constraint more accurately than FORM.  The 

computational efforts to obtain these sensitivities are described in Table 6.3.  For all 

methods, no additional function evaluations other than that for reliability analysis were 

required in obtaining these sensitivities.  In other words, the same computational effort is 

needed to obtain both reliability and sensitivity results. 

 

6.4.2  Example Set II – Reliability-based Design Optimization 

6.4.2.1  Example 3 – Mathematical Functions 

 Consider a mathematical example with two independent Gaussian random 

variables and three nonlinear constraints.  The RBDO problem is defined by 
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 (6.23) 

where  is an independent, bivariate, Gaussian random 

vector with means µ

2
1 1 2 2( ) { ( ), ( )}TX d X d=X d

i and standard deviations σi = 0.3; i =1,2.  The design vector is 

. 1 2 1 2{ , } { , }T Td d= = µd

 Using the initial design point , Figure 6.4 depicts the optimization 

history when the constraints are evaluated by the proposed univariate decomposition 

method, FORM, SORM, and Monte Carlo simulation involving 10

{ }0 5,5 T=d

6 samples for each 

failure probability calculation.  The detailed results presented in Table 6.4 suggest that all 

four methods are able to reach an optimum state in 4-6 iterations, which yield very close 

optimal solutions.   Hence, each method can be used to solve this optimization problem.  

It is interesting to note that SORM requires fewer function evaluations than FORM, 

which is somewhat counter-intuitive because reliability analysis by SORM is generally 

more expensive than that by FORM.  However, an exception may occur, when SORM 

leads to fewer design iterations than FORM in the outer loop, which was observed in this 

particular RBDO problem.  Nevertheless, the univariate method is more efficient than 
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FORM or SORM, because of the fewest number of function evaluations required to solve 

this example. 

 

6.4.2.2  Example 4 – Cantilever Beam 

 In this example, the design of a fixed cantilever beam, which has a deterministic 

length L = 100 inches, a random vertical load X1, a random lateral load X2, shown in 

Figure 6.5, was studied.  The beam is made of a material with random uniaxial yield 

strength X3 and random elastic modulus X4.   The width d1 and height d2 of the prismatic 

cross-section are two design variables.  The objective is to minimize the area of the beam 

cross-section so that its total volume is minimized.  Two nonlinear failure modes were 

examined.  The first failure mode is due to yielding at the fixed end of the cantilever; and 

the second failure mode is associated with the tip displacement exceeding a permissible 

value of 2.5 inches.  The RBDO problem is stated as 

 

2
0 1 2

1 2
1 3

1 2 2 1

2 26
1 2

2 4 4
4 1 2 2 1

min   ( )

600subject to ( ) 0 ( 2.5)

4 10( ) 2.5 0 ( 3.5)

0 5 inches;  1, 2i

c d d

X Xc P X
d d d d

X Xc P
X d d d d

d i

∈

=

⎡ ⎤⎛ ⎞
= − + < ≤ Φ −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
⎡ ⎤×

= − + < ≤ Φ −⎢ ⎥
⎢ ⎥⎣ ⎦

≤ ≤ =

d
d

d

d

, (6.24) 

where  is an independent, four-dimensional, Gaussian 

random vector, in which each random variable has mean and standard deviation listed in 

Table 6.5.  The design vector is .  The proposed RBDO method starts with 

the initial design vector  in. 

4
1 2 3 4{ , , , }TX X X X=X ∈

1 2{ , }Td d=d

{ }0 2, 4 T=d
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 Figure 6.6 illustrates the optimization history of the proposed univariate method, 

FORM, SORM, and Monte Carlo simulation.  Table 6.6 compares the accuracy and 

efficiency of three approximate methods by using the Monte Carlo benchmark solution.  

The results suggest that all three methods attain the same optimum value (≈ 9.21 inch2) of 

the objective function.  The univariate method is slightly more expensive than FORM, 

because of (1) additional function evaluations required after locating MPPs and (2) larger 

design iterations involved in this particular example.  Even if the numbers of design 

iterations are the same, the univariate method will require slightly more function 

evaluations than FORM.   In this example, both FORM and univariate methods are more 

efficient than SORM, a trend that is expected unless the number of design iterations 

required by SORM is significantly fewer than others. 

 Since the univariate method and FORM/SORM entails approximate reliability 

analysis, the constraints associated with the optimal design generated by each method 

were evaluated using the Monte Carlo simulation (106 samples).  Table 6.7 presents the 

values of failure probability embedded in each constraint.  It appears that both FORM 

and SORM slightly violates the second constraint with a maximum error of 18 and 9 

percent in calculating the failure probability.  In contrast, no such violations were 

observed in the univariate method.  This is because the proposed univariate method is 

more accurate than FORM/SORM in performing reliability analysis in this example. 
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6.4.2.3  Example 5 – 10-Bar Truss 

 A ten-bar truss, illustrated in Figure 6.3, was designed by minimizing its total 

volume given that the truss reliability is no less than a target value of .  

The RBDO formulation is  

(2) 0.9772Φ =

( )

( )

10
0 1 2 3 4 5 8 6 7 9 10

1 3 1 1 10 10

min   ( ) 360 2

subject to ( ) 14 ( ), , ( ) 0 ( 2)

0 5 inches;  1,10i

c d d d d d d d d d d

c P v X d X d

d i

∈

⎡ ⎤= + + + + + + + + +⎣ ⎦

= − < ≤ Φ −⎡ ⎤⎣ ⎦
≤ ≤ =

d
d

d ,   (6.25) 

where  is an independent, Gaussian random vector with 

each component representing a random cross-section of the truss.  The random variable 

X

10
1 1 10 10{ ( ), , ( )}TX d X d=X ∈

Tµ

i follows Gaussian distribution, and has means µi and standard deviation σi = 0.2 in2; 

.   The design vector is .  The initial design 

point is . 

1, ,10i = 1 10 1 10{ , , } { , , }Td d= = µd

{ } 2
0 3, ,3  inT=d

 Figure 6.7 and Table 6.8 present the optimization history and optimization results 

by various methods.  The optimal volumes achieved by the univariate method, SORM, 

and Monte Carlo vary from 9327 to 9340 inch3.   In contrast, FORM leads to a lower 

optimal volume, which is 9282 inch3.  A Monte Carlo reliability analysis at optimal 

designs obtained by FORM, SORM, and univariate method reveals that the failure 

probability estimates have associated absolute errors of 55%, 5%, and 1%, respectively.  

Hence, FORM violates the constraint leading to the lower optimum volume of the truss.  

Both SORM and univariate method satisfy the constraint and hence provide acceptable 

designs.  However, the univariate method proposed is more efficient than SORM in 

solving the truss problem. 
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6.4.2.4  Example 6 – Torque Arm 

The final example involves designing a torque-arm, where eight random shape 

parameters  describe its outer and inner boundaries, as shown in Figure 6.8 

for the mean input at the initial design.   The left hole of the structure is fixed and two 

deterministic forces F

( );  1,8i iX d i =

1 = 2789 N and F2 = 5066 N are applied at the center of the right 

hole.  The torque-arm material has mass density ρ = 7800 kg/m3, elastic modulus E = 207 

GPa, Poisson’s ratio ν = 0.3, and uniaxial yield strength Sy = 400 MPa.  The objective is 

to minimize the mass of the structure  by changing the shape of the geometry (i.e., 

by ) such that the von Mises stresses at five selected points do not exceed S

( )m d

8( )∈X d y.  

Locations of these five points, marked as finite element nodes 90, 98, 106, 173, and 175, 

are illustrated in Figure 6.9.  Mathematically, 
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d
d d

d X d

, (6.26) 

where , ( ; )k eσ X d  is the von Mises equivalent stress at the kth selected point.  The finite 

element mesh includes 657 nodes and 177 eight-noded quadrilateral elements.  A plane 

stress condition was assumed.  The independent random vector X, which represents 

manufacturing variability, follows Gaussian distribution.  The components Xi has means 



www.manaraa.com

 188

µi and standard deviations σi = 0.2 mm; 1, ,10i = .   The design vector is 

.     1 8 1 8{ , , } { , , }T Td d= = µd µ

} The initial design point is mm with the corresponding finite 

element mesh depicted in Figure 6.8.  Following linear-elastic stress analysis, Figure 6.10 

presents the contour plot of the von Mises stress at the initial design when shape 

parameters assume their mean values.  Due to conservative initial design, the maximum 

von Mises stress of 130 MPa, which occurs at node 98, is much lower than the uniaxial 

yield strength (S

{0 0, ,0 T=d

y = 400 MPa).  During design iterations, the movement of nodes, which 

control shape parameters ( );  1,8i iX d i = , was performed by design velocity field 

involving an isoparametric mapping (Choi and Chang, 1994).   

 For computational efficiency, the optimal design was obtained in two steps.  In 

the first step, a coarse RBDO was performed using the initial design  and 

an approximate reliability method, known as the mean-value first-order second moment 

method.  The resultant design after 10 iterations in the first step (coarse RBDO) is 

{0 0, ,0 T=d }

{ }0 0.427, 1, 0.063, 2, 0.327,2,0.234,0.875  mmT= − − − − −d .  In the second step, a refined 

RBDO involving the proposed univariate method and the result of step 1 as the initial 

design (i.e., 0 =d d0 ) was employed.  After 9 iterations, the final design was attained, 

which is  with the 

corresponding mean shape presented in Figure 6.11.  The optimal mass of the torque arm 

is 2.035 kg – a 30 percent reduction from the initial mass of 2.915 kg.  Figure 6.11 also 

displays the contour plot of the von Mises stress at the optimal design when the shape 

parameters assume their mean values.  Compared with the conservative initial design of 

{ }0.709, 0.721, 0.077, 2, 0.247,2,0.258,0.524  mmT= − − − − −*d
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Figure 6.10, larger stresses, for example 256, 247, and 226 MPa at nodes 98, 106, and 

173, respectively, can be safely tolerated in the final design of Figure 6.11.  The larger 

area of the slotted hole and movement of outer boundaries have led to significant 

alteration of the shape of the initial design.  Figure 6.12 shows the optimization history of 

the objective function. 

 If the uncertainty of X is ignored and the constraints in Equation 6.26 is replaced 

by , as commonly adopted in traditional design optimization, 

13 iterations led to  and a 

corresponding optimal mass of 1.861 kg – a 36 percent reduction from the initial mass.  

Therefore, a traditional risk-ignoring optimization process may lead to a smaller mass 

than that obtained from RBDO, however with the higher stresses, as depicted in the 

contour plot of Figure 6.13.    If uncertainties are included, the optimal design in Figure 

6.13 is highly likely to violate the reliability constraints.  By comparing optimal designs 

from RBDO (Figure 6.11) and risk-ignoring optimization (Figure 6.13), it appears that 

the outer boundaries generated by both designs are similar.  However, the inner slot from 

the RBDO is smaller than that from the risk-ignoring optimization.  The primary reason 

is that the latter optimization does not account for variability of shape parameters and of 

the performance function.  In addition, the sensitivity of the von Mises stress with respect 

to shape parameters in the inner boundary is much larger than that in the outer boundary. 

( ), ; 0;  1,y k eS −σ < =d d 5k

{ }1, 1, 0.062, 2, 1.785,2,1.676,0.795  mmT= − − − − −*d

 In summary, the univariate method consistently provides very accurate RBDO 

solutions.  Of the three methods studied, the FORM-based RBDO is the most efficient 

method; however, it may lead to infeasible or inaccurate designs.  Both SORM and 

univariate method have comparable accuracies, but the univariate method is less 



www.manaraa.com

 190

expensive than SORM.  Nevertheless, for industrial-scale design applications, further 

research is required in making the proposed univariate method computationally more 

efficient by potentially decoupling the design and reliability iterations or exploring the 

possibility of single-loop formulations. 
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Table 6.1  Gradients of two mathematical constraint functions 
 
 

 Methods 
Gradients FORM SORM Univariate Monte Carlo(a)

1( )c d∂ ∂d 1  0.007896 0.007896 0.01390 0.01389 

1( )c∂ ∂d 2d  -0.007896 -0.007896 -0.00475 -0.00482 

2 ( )c∂ ∂d 1d  0.004132 0.004132 0.001945 0.001944 

2 ( )c∂ ∂d 2d  -0.004132 -0.004132 -0.001945 -0.001944 
 
         (a) Sample size = 106 for each simulation; finite difference with 1% perturbation. 
 

 
 
 
 

Table 6.2  Gradients of the constraint in 10-bar truss 
 

 
 Methods 

Gradients FORM SORM Univariate 
(linear) 

Univariate 
(Quadratic) 

Monte Carlo(a)

1( )c d∂ ∂d  -0.2107 -0.3156 -0.3038 -0.3063 -0.2976 

2( )c d∂ ∂d  -0.0155 -0.0232 -0.0217 -0.0226 -0.0272 

3( )c d∂ ∂d  -0.0086 -0.0129 -0.0121 -0.0122 -0.0144 

4( )c d∂ ∂d  -0.0086 -0.0129 -0.0121 -0.0122 -0.0142 

5( )c d∂ ∂d  -0.2005 -0.3003 -0.2850 -0.2891 -0.2788 

6( )c d∂ ∂d  -0.0729 -0.1092 -0.1042 -0.1053 -0.1138 

7( )c d∂ ∂d  -0.0769 -0.1152 -0.1094 -0.1105 -0.1218 

8( )c d∂ ∂d  0.0007 0.0010 0.0010 0.0010 0.0008 

9( )c d∂ ∂d  -0.0250 -0.0375 -0.0357 -0.0363 -0.0386 

10( )c d∂ ∂d  -0.0464 -0.0695 -0.0664 -0.0673 -0.0730 
 
          (a) Sample size = 106 for each simulation; finite difference with 1% perturbation. 
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Table 6.3 Computational efforts for 10-bar truss 
 

Methods Number of function evaluations 
FORM 127 
SORM 365 

Univariate(a) 187 
Monte Carlo 106

  
                      (a) ( ) ( )127 1 127 7 1 10 187n N+ − × = + − × = . 

 
 
 
 
 
 

Table 6.4  Optimization results by various methods for mathematical functions 
 

 
 Methods(a)

 FORM SORM Univariate Monte Carlo 

No. of iterations 6 5 4 4 

No. of function evaluations 1406 1226 949 26×106

Final design: d* = {d1
*,d2

*}T     
  d1

*  3.4391 3.4544 3.4544 3.4547 
  d2

* 3.2867 3.2760 3.2740 3.2741 

Constraint functions:     
  c1(d*) - Φ(-3) 1.35×10-4 -9.00×10-6 4.00×10-6 0 
  c2(d*) - Φ(-3) -2.33×10-4 -2.80×10-5 -2.90×10-5 -5.00×10-6

  c3(d*) - Φ(-4) -1.17×10-5 -5.67×10-5 -5.67×10-6 -5.67×10-6

Objective function:     
  c0(d*) 6.7258 6.7304 6.7284 6.7288 

 
(a)  Initial design d0 = {5,5}T. 
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Table 6.5  Statistical properties of random input  
for cantilever beam 

 
 

Random 
variable 

 
Mean 

Standard 
deviation 

Probability 
distribution 

X1, lb 1000 100 Gaussian 

X2, lb 500 100 Gaussian 

X3, psi 40,000 200 Gaussian 

X4, psi 29×106 1.45×106 Gaussian 
 
 
 
 
 
 
 

Table 6.6  Optimization results by various methods for the cantilever beam 
 

 
 Methods(a)

 FORM SORM Univariate Monte Carlo 

No. of iterations 4 5 6 6 

No. of function evaluations 992 1412 1373 29×106

Final design: d* = {d1
*,d2

*}T     
  d1

*, in 2.4530 2.4580 2.4683 2.4629 
  d2

*, in 3.7550 3.7476 3.7326 3.7403 

Constraint function:     
  c1(d*) - Φ(-3) 0 -9.00×10-6 -2.80×10-5 -5.00×10-6

  c2(d*) - Φ(-3.5) 4.24×10-5 2.14×10-5 -2.26×10-5 -2.40×10-6

Objective function:     
  c0(d*), in2 9.2109 9.2117 9.2132 9.2119 

 
(a)  Initial design d0 = {2,4}T in. 
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Table 6.7  Failure probabilities for cantilever beam 
 

 
Methods c1(d*)  c2(d*) 
FORM 0.006210 0.0002750 
SORM 0.006201 0.0002540 

Univariate 0.006182 0.0002100 
Monte Carlo 0.006205 0.0002350 

  
 
 
 
 
 

Table 6.8  Optimization results by various methods for the 10-bar truss 
 

 
 Methods(a)

 FORM SORM Univariate Monte Carlo 

No. of iterations 15 12 13 11 

No. of function evaluations 2694 4894 3113 117×105

Final design: d* = {d1
*,…,d10

*}T     
  d1

*, in2 3.998 4.072 3.935 4.21 
  d2

*, in2 1.944 1.968 1.947 1.918 
  d3

*, in2 1 1 1 1 
  d4

*, in2 1 1 1 1 
  d5

*, in2 4.388 4.384 4.381 4.268 
  d6

*, in2 2.827 2.783 2.94 2.669 
  d7

*, in2 2.225 2.284 2.117 2.436 
  d8

*, in2 1 1.001 1 1.001 
  d9

*, in2 1 1 1 1.039 
  d10

*, in2 2.754 2.77 2.743 2.728 

Constraint function:     
  c1(d*) - Φ(-2) 1.25×10-2 -1.13×10-3 2.3×10-4 2.3×10-5

Objective function:     
  c0(d*), in3 9282 9332 9327 9340 

 
 (a)  Initial design d0 = {3,…,3}T in2. 
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Figure 6.1  Various approximations of the performance function of kth constraint 
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Evaluate objective [c0(dj)] 
& constraints [ck(dj), k = 1, K]

(Step 2) 

Evaluate gradients of objective 
& constraints with respect to di

(Step 3) 

Perform standard gradient-
based  

design optimization 
(Step 4) 
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Design sensitivity 
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decomposition method 
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Update system: 
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No 
Stop 
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Set j = 0;   

Initialize design variables (dj) 
(Step 1) 

 
 

 
Figure 6.2  Flowchart of the proposed RBDO process 
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Figure 6.3  A ten-bar truss structure (Repeating  Figure 3.4)  
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Figure 6.4  History of math matical objective function 
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Figure 6.5  A cantilever beam subjected to end loads 
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Figure 6.6  History of objective function for cantilever beam 
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Figure 6.7  History of objective function for 10-bar truss 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Iteration Number

7000

8000

9000

10000

11000

12000

13000

O
bj

ec
tiv

e 
Fu

nc
tio

n

Monte Carlo
FORM
SORM
Univariate Method

 
 
 
 



www.manaraa.com

 202

 
 

 

 

 
 
 
 
 
 
 

2789 N

5066 N

X8X6 

X5 X7 

X4 
X3 X1

X2

 
 
 
 

Figure 6.8  Initial design of torque arm geometry at mean values of shape parameters 
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Figure 6.9 Locations of points for prescribing constraints 
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Figure 6.10  Contour of von Mises stress at mean values of shape parameters for 

initial design 
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Figure 6.11  Contour of von Mises stress at mean values of shape parameters for 

RBDO design  
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Figure 6.12  Optimization  history of objective function for torque arm 
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Figure 6.13  Contour of von Mises stress at mean values of shape parameters for risk-
ignoring optimum design  
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS FOR 

FUTURE WORK 

7.1  Summary and Conclusions 

The primary objective of this study is to develop a new stochastic method to solve 

highly nonlinear reliability problems, referred to as the most probable point (MPP)-based 

decomposition method, for reliability analysis and subsequent design optimization of 

complex engineering systems.  The following four research directions have been pursued: 

(1) development of an MPP-based univariate method with simulation; (2) development of 

an MPP-based univariate method with numerical integration; (3) development of an 

MPP-based univariate method for solving multiple MPPs problems; (4) sensitivity 

analysis and reliability-based design optimization involving the new univariate method.  

The conclusions from above four studies are summarized in the following subsections. 

7.1.1 MPP-based Univariate Method with Simulation 

A new univariate decomposition method employing the most probable point as 

the reference point was developed for predicting failure probability of uncertain structural 

and mechanical systems.  The method involves novel decomposition at most probable 

point that facilitates a univariate approximation of a general multivariate function, 

response surface generation of the univariate function, and Monte Carlo simulation.  In 

addition to the effort of identifying the MPP, the method requires a small number of exact 

or numerical evaluations of the performance function at selected input.  Four numerical 

examples involving mathematical functions and structural/solid-mechanics problems 
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illustrate the proposed method.  Comparisons were made with alternative approximate 

and simulation methods to evaluate the accuracy and computational efficiency of the 

univariate response-surface method developed.  Results indicate that the proposed 

method provides accurate and computationally efficient estimates of probability of 

failure.  Finally, the fatigue failure of lever arm in a wheel loader was evaluated, 

demonstrating the ability of the new method in solving industrial-scale fatigue reliability 

problems. 

 

7.1.2 MPP-based Univariate Method with Numerical Integration 

A new and alternative univariate method was developed for predicting component 

reliability of mechanical systems.  This method involves novel function decomposition at 

most probable point that facilitates univariate approximation of a general multivariate 

function in the rotated Gaussian space and one-dimensional integrations for calculating 

the failure probability.  Based on linear and quadratic approximations of the univariate 

component function in the direction of most probable point, two mathematical 

expressions of the failure probability were derived.  In both expressions, the proposed 

effort in evaluating the failure probability involves calculating conditional responses at 

selected input determined by sample points and Gauss-Hermite integration points.  

Results of five numerical examples involving elementary mathematical functions and 

structural/solid-mechanics problems indicate that the proposed method provides accurate 

and computationally efficient estimates of the probability of failure.  Compared with the 

previous work, no Monte Carlo simulation is required in the present version of the 
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univariate method developed. Although both versions of the univariate method have 

comparable computational efficiency, the new method should be useful in deriving 

sensitivity of failure probability for reliability-based design optimization, which is the 

ultimate goal of probabilistic mechanics. 

 

7.1.3 Multi-Point Univariate method 

 A multi-point univariate decomposition method was developed for solving 

component reliability problems involving multiple most probable points (MPPs).  The 

method is based on: (1) a novel function decomposition at all MPPs that facilitates local 

univariate approximations of a performance function in the rotated Gaussian space, (2) 

Lagrange interpolation for univariate component functions and return mapping to the 

standard Gaussian space, and (3) Monte Carlo simulation.  The proposed decomposition 

results in an approximate failure domain that is constructed by a union of failure sub-

domains associated with all MPPs.  The boundary of the approximate failure domain can 

be highly nonlinear, which consists of explicit functions of random input variables.  

Hence, the embedded Monte Carlo simulation can be conducted for an arbitrarily large 

sample size.  In addition to the effort in identifying all MPPs, the computational effort in 

the multi-point method developed can be viewed as performing deterministic response 

analysis at user-selected input defined by sample points.  Compared with the multi-point 

FORM/SORM available in the current literature, the multi-point univariate method 

provides higher-order approximations of the boundary of the failure domain.  Three 

numerical examples involving elementary mathematical functions and a structural 
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dynamics problem illustrate the proposed method.  Comparisons were made with existing 

multi-point FORM/SORM and direct Monte Carlo simulation to evaluate the accuracy 

and computational efficiency of the univariate method developed.  Results indicate that 

the multi-point univariate method consistently provides an accurate and computationally 

efficient estimate of the probability of failure.    

 

7.1.4 Design Sensitivity Analysis and RBDO by Univariate Method 

 A new univariate decomposition method was developed for design sensitivity 

analysis and reliability-based design optimization of mechanical systems subject to 

uncertain performance functions in constraints.  The method involves a novel univariate 

approximation of a general multivariate function in the rotated Gaussian space for 

reliability analysis; analytical sensitivity of failure probability with respect to design 

variables; and standard gradient-based optimization algorithms.  In both reliability and 

sensitivity analyses, the proposed effort can be viewed as performing multiple one-

dimensional integrations.  The evaluation of these one-dimensional integrations requires 

calculating only conditional responses at selected deterministic input determined by 

sample points and Gauss-Hermite integration points.  Results of two numerical examples 

involving mathematical functions and truss problems indicate that the proposed method 

provides accurate and computationally efficient estimates of the sensitivity of failure 

probability.  Subsequent results of four design problems, entailing mathematical 

functions and structural/solid-mechanics applications, indicates that the new sensitivity 
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equations developed facilitate an accurate and/or efficient method for reliability-based 

design optimization of mechanical systems.   

 

7.2  Recommendations for Future Work 

1. The accuracy of the univariate approximation in the MPP-based univariate 

method  may depend on the orientation of first N-1 axes.  In the current work, the 

orientation is defined by the matrix R obtained from the Gram-Schmidt 

orthogonalization.  However, an improved approximation may be possible by 

selecting an orientation that is optimal in some sense.  Future efforts should be 

expended to define relevant criteria that lead to an optimal choice for defining the 

first N-1 axes. 

2. The high accuracy of the univariate method developed has been demonstrated in 

conjunction with the double-loop formulation for solving simple RBDO 

problems.  However, for solving industrial-scale design problems, the double-loop 

approach is very expensive because of the coupled inner (reliability) and outer 

(design) iterations of an RBDO process.  Therefore, further research is required in 

making the proposed univariate method computationally more efficient by 

potentially decoupling the design and reliability iterations or exploring the 

possibility of single-loop formulations. 

3. The class of RBDO problems studied entails a single deterministic objective 

function and constraints that are associated with only component reliability 

analysis.  A major future effort should focus on solving a generalized RBDO 
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problem, where there are multiple objective functions that require stochastic 

analysis and constraint functions that include both component and system 

reliability analyses. 
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APPENDIX A. APPROXIMATE EVALUATIONS OF mσ  AND  ∆ε

For a uniaxial stress state, let , maxS S∆ , , and maxe e∆  denote elastically 

calculated maximum stress, stress range, maximum strain, and strain range at an arbitrary 

point, which are typically evaluated using linear-elastic FEM.  Define , , maxσ ∆σ maxε , 

and  as maximum stress, stress range, maximum strain, and strain range at the same 

point that are evaluated using appropriate elastic-plastic analysis.  Using Neuber’s rule 

and linear-elastic calculations, the inelastic maximum stress 

∆ε

maxσ and inelastic strain 

range  can be estimated by solving the following two pairs of equations (Stephens et 

al., 2001) 

∆ε

 

2
max max max max

1
max max

max

f
n

K S e

E K

′

σ ε =

σ σ⎛ ⎞ε = + ⎜ ⎟′⎝ ⎠

 (A.1) 

and 

 

2

1

2
2

f
n

K S e

E K

′

∆σ∆ε = ∆ ∆

∆σ ∆σ⎛ ⎞∆ε = + ⎜ ⎟′⎝ ⎠

, (A.2) 

respectively, where b c
f fK ′ ′ ′= σ ε  and n b c′ = are Ramberg-Osgood parameters,   

 
1, without defect

11 , with defect
1

f tK K
a r

⎧
⎪= +⎨ +⎪ +⎩

  , (A.3) 

is the fatigue notch factor,  is the elastic stress concentration factor due to a 

spherical notch, and 

2.05tK =

( 1.80.0274 2070 ua = )S  with Su in MPa and a in mm (Stephens et al., 

2001).   The inelastic mean stress can be easily estimated from max 2mσ = σ −∆σ .  For a 
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multiaxial stress state, the simplest approach involves following the same procedure 

using von Mises equivalent stresses and strains.  Note that there are other rules, such as 

linear rule, Glinka’s strain energy density rule, for estimating inelastic stresses and strains 

(Stephens et al., 2001).  They were not considered in this study. 
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APPENDIX B.  POROSITY FIELD AND DEFECT SIZE 

Casting simulation codes, such as MAGMASOFT (2002), are currently available 

that allow the size and location of shrinkage discontinuities to be predicted before a 

mechanical component is actually cast.  Consider a three-dimensional mechanical 

component with physical domain 3Ω⊂ \ and a small subdomain xΩ ⊂Ω  in the vicinity 

of a spatial point 3∈Ω⊂x \ .  If p(x) represents the porosity field over , the 

equivalent mean radius µ

xΩ

r of a spherical hole (i.e., with porosity = 1) can be obtained 

from  

 

1 3
3 ( )

4
x

r

p d
Ω

⎡ ⎤
⎢ ⎥µ =
⎢ ⎥π
⎣ ⎦

∫ x x
  . (B.1) 

Using Equation B.1 and predicted porosity field from casting simulation, the mean size of 

a casting-induced defect can be estimated. 
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APPENDIX C.  BARRIER METHOD FOR FINDING MULTIPLE MPPS 

The basic idea behind barrier method (Kiureghian, et al, 1998) is that by 

constructing artificial barriers around previously identified MPPs, the searching 

algorithm is forced to seek a new MPP.  Since the objective function is the distance u  

between limit state and origin, a “barrier” around the first MPP 1
∗u  can be constructed by 

moving the limit state surface in the neighborhood of 1
∗u  away from the origin.  By 

adding a “bulge” to the limit state surface, the modified limit state function ( )1h u is 

described by , where ( ) ( ) ( )1 1h h b= +u u u ( )h u is the transformed limit state function in 

the standard normal space (u-space), and ( )1b u defines the bulge function fitted at 1
∗u .  

Solving the optimization problem with the limit state function ( )1h u leads to a second 

MPP .  A bulge 2
∗u ( )2b u  is now added at 2

∗u , resulting to the limit state function 

, which can be used to seek a third MPP ( ) ( ) ( )2 1 2h h b= +u u u 3
∗u .  This process is 

continued until all MPPs are identified (See Figure C.1).  Thus, the limit state function 

for finding the mth MPP is 

( ) ( ) ( ) ( ) ( )
1

1 2 1
1

m

m m m i
i

h h b h b
−

− − −
=

= + = +∑u u u u u .                          (C.1) 

To define the bulge, it is important to make sure that the foot of the bulge has a 

strong outward curvature.  Furthermore, the starting point for subsequent searching 

iterations is selected in the direction away from previous bulges to reduce the possibility 

of convergence at the bulges’ feet.  The following considerations lead to a definition of a 

bulge at a MPP : ( )ib u i
∗u
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(1)  must have a positive value in the neighborhood of ( )ib u i
∗u  (in order to move the 

limit state surface away from the origin), and zero elsewhere. 

(2) It is desirable that the bulge has a strong outward curvature at its feet. 

(3) Each of the modified limit state functions must be continuous and differentiable.  That 

means each bulge function ( )ib u  must be continuous and differentiable.  Based on 

the proceeding considerations, select 

( ) ( )222 ,

0, elsewhere

i i i i i
i

s r rb
∗ ∗⎧ − − −⎪= ⎨

⎪⎩

u u u uu ≤
                                (C.2) 

where ri is the radius of the bulge and si is a positive scale factor. The profile of the 

bulge is shown in Figure C.2.  The second-order derivative of ( )ib u  at the foot is 

2 22 2
2 4 12 8

i i
i i

i
i i i i i i

rr

b s r s s r
∗

∗

∗

− =
− =

∂
= − + − =

∂ u uu u

u u
u

.                     (C.3) 

 It follows that si and ri must be large in order to have a strong curvature at the foot of 

the bulge. 

(4) If multiple MPPs exist, they are usually far apart.  If not, then owing to the 

smoothness of the limit state surface, the corresponding tangent planes must be nearly 

coincident, which implies that one of these points needs to be considered.  Select ri as 

, where  is a parameter.  A small  is conservative but may produce insufficient 

curvature at the foot of the bulge, whereas a large  may result in a bulge that 

conceals other significant MPPs. 

iγβ γ γ

γ

(5) The scale parameter si controls the height of the bulge and, therefore, the distance by 

which the limit state surface around i
∗u  moves away from the origin.  si must be 
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sufficiently large to assure a strong curvature at the foot of the bulge. Suppose that the 

design is pushed away from the origin by the amount iδβ , where 0 .  The 

necessary height of the bulge at that point is approximated by 

< δ < γ

( )tani i h ∗δβ θ = δβ u∇ i .  Using Equation (C.2), si can be written as 

( )
( ) ( )

22 2

i i
i

i i

h
s

∗δβ
=
⎡ ⎤γβ − δβ⎣ ⎦

u∇
.                                            (C.4) 

Equation (C.2) and (C.4) together with parameters  and γ δ completely define the bulge 

at each MPP  in terms of the quantities i
∗u iβ  and ( )ih ∗u∇ . 

 Initial point  also needs to be chosen at the beginning of each search.  At first, 

set  for all MPPs, and .  Then, it is more efficient if  is chosen on the 

opposite side of previous bulges.  For example, select  for finding the mth MPP as 

0u

0 0=u 1γ ≠ 0u

0u

( )0 1 2 m
∗ ∗ ∗

−= −ε + + +u u u u" 1 ,                                        (C.5) 

where ε  is a small positive number in the range 0.2-0.5. 

As shown in Figure C.3, define iϕ  as the angle between i
∗u  and line from the 

origin to the foot of the bulge ( )ib u .  The largest value of iϕ  occurs when the limit state 

surface is spherical (the distance from the foot of the bulge to the origin is also equal to 

).  Using the cosine rule for the triangle in Figure C.4, iβ iϕ  satisfies 

( )1cos 1 0.5i
− 2ϕ ≤ − γ ,                                       (C.6) 

which defines the half-angle of a hyper-cone that completely contains the bulge.  Any 

MPP found within this cone is potentially spurious.  Convergence to a spurious MPP is 

usually an indication that no more genuine MPPs exist.  
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Figure C.1 Successive uses of bulges to find multiple MPPs 
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Figure C.2 Profile of the bulge  
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Figure C.3 Definition of cone containing the bulge 
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APPENDIX D.  SENSITIVITY ANALYSIS BASED ON FORM/SORM 

When gradient-based optimization algorithm is used in RBDO, the analytical 

sensitivity for reliability analysis should be provided.  Here assuming reliability analysis 

is based on FORM or SORM.  

If using FORM, the derivative of failure probability with respect to ith design 

variable in x-space using chain rule and Equation (6.14) is  

( ) ( ) ( )
( )

, 1 ;
;

T
F HL

HL HL
i i

P h
d d h

∗=

⎡ ⎤∂ ∇∂β ∂
= −φ −β = φ −β ⎢

∂ ∂ ∂∇⎢ ⎥⎣ ⎦ u u

u d u
u d id

⎥  ,              (D.1) 

where HLβ  is Hasofer-Lind reliability index, { }1, , T
Nh h u h u∇ = ∂ ∂ ∂ ∂" , i  is the 

 norm,  2L { }1 , , T
i i Nd u d u d∂ ∂ = ∂ ∂ ∂ ∂u " i is obtained from the x-u transformation, 

and  is the MPP in u-space. ∗u

If using SORM, the derivative of failure probability with respect to ith design 

variable in x-space is  

( )
( )

, , , ;
;

T
F II F II F IIHL

i HL i HL i

P P P h
d d dh

∗=

⎡ ⎤∂ ∂ ∂ ∇∂β ∂
= = − ⎢

∂ ∂β ∂ ∂β ∂∇⎢ ⎥⎣ ⎦ u u

u d u
u d

⎥ ,           (D.2) 

where , F II HLP∂ ∂β depends on different type of SORM methods.  For example, if 

Breitung’s asymptotic solution (Breitung, 1984) is used to obtain failure probability, then 

its derivative with respect to HLβ  can be estimated by 

( ) ( ) ( ) ( ) 1/ 21 111/ 2, 
11 1,

11 1
2 1

N NNF II i
HL i HL HL j HLii j j i

HL i HL

P −− −−−

== = ≠

∂ ⎡ ⎤κ
= − φ β + κ β + Φ −β + κ β⎢ ⎥∂β + κ β⎣ ⎦

∑∏ ∏ , 

(D.3) 
where  is the main curvature at MPP. ,  1, , 1i i Nκ = −" iκ  is assumed as a constant which 
does not change with HLβ , that is, 0i HL∂κ ∂β = . 
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